
MySQL Connector/Net Developer's Guide

MySQL Connector/Net Developer's Guide

Abstract

This manual describes how to install, configure, and develop database applications using MySQL Connector/Net,
the driver that allows .NET applications to communicate with MySQL servers.

Document generated on: 2012-12-04 (revision: 33367)

iii

Table of Contents
Preface and Legal Notices ... vii
1. MySQL Connector/Net .. 1
2. Connector/Net Versions .. 3
3. Installing Connector/Net .. 5

3.1. Installing Connector/Net on Windows .. 5
3.1.1. Installing Connector/Net using the Installer ... 5
3.1.2. Installing Connector/Net Using the Zip Packages .. 10

3.2. Installing Connector/Net on Unix with Mono ... 11
3.3. Installing Connector/Net from the Source Code .. 12

4. Connector/Net Visual Studio Integration ... 15
4.1. Making a Connection .. 15
4.2. Using IntelliSense in the SQL Editor ... 17
4.3. Editing Tables .. 18

4.3.1. Column Editor ... 19
4.3.2. Editing Indexes .. 20
4.3.3. Editing Foreign Keys ... 20
4.3.4. Column Properties ... 21
4.3.5. Table Properties .. 21

4.4. Editing Views ... 23
4.5. Editing Stored Procedures and Functions .. 24
4.6. Editing Triggers .. 26
4.7. Editing User Defined Functions (UDF) ... 27
4.8. Debugging Stored Procedures and Functions .. 27
4.9. Cloning Database Objects .. 37
4.10. Dropping Database Objects .. 37
4.11. Using the ADO.NET Entity Framework .. 37
4.12. MySQL Website Configuration Tool ... 38
4.13. MySQL SQL Editor ... 42
4.14. DDL T4 Template Macro .. 43

5. Connector/Net Tutorials ... 47
5.1. Tutorial: An Introduction to Connector/Net Programming .. 47

5.1.1. The MySqlConnection Object ... 47
5.1.2. The MySqlCommand Object .. 48
5.1.3. Working with Decoupled Data .. 50
5.1.4. Working with Parameters ... 53
5.1.5. Working with Stored Procedures .. 54

5.2. Tutorial: MySQL Connector/Net ASP.NET Membership and Role Provider 56
5.3. Tutorial: MySQL Connector/Net ASP.NET Session State Provider 60
5.4. Tutorial: MySQL Connector/Net ASP.NET Profile Provider .. 62
5.5. Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source 64
5.6. Tutorial: Databinding in ASP.NET using LINQ on Entities ... 76
5.7. Tutorial: Using SSL with MySQL Connector/Net ... 80
5.8. Tutorial: Using MySqlScript ... 82

5.8.1. Using Delimiters with MySqlScript .. 84
5.9. Tutorial: Generating MySQL DDL from an Entity Framework Model 86

6. Connector/Net Programming .. 87
6.1. Connecting to MySQL Using Connector/Net .. 88
6.2. Creating a Connector/Net Connection String .. 88

6.2.1. Opening a Connection ... 88
6.2.2. Handling Connection Errors ... 90
6.2.3. Using GetSchema on a Connection .. 91

6.3. Using MySqlCommand ... 92
6.4. Using Connector/Net with Connection Pooling ... 93
6.5. Using the Windows Native Authentication Plugin .. 94
6.6. Writing a Custom Authentication Plugin ... 94

MySQL Connector/Net Developer's Guide

iv

6.7. Using Connector/Net with Table Caching .. 98
6.8. Using the Connector/Net with Prepared Statements ... 98

6.8.1. Preparing Statements in Connector/Net .. 98
6.9. Accessing Stored Procedures with Connector/Net .. 99

6.9.1. Using Stored Routines from Connector/Net ... 100
6.10. Handling BLOB Data With Connector/Net .. 102

6.10.1. Preparing the MySQL Server .. 102
6.10.2. Writing a File to the Database .. 103
6.10.3. Reading a BLOB from the Database to a File on Disk 104

6.11. Using the Connector/Net Interceptor Classes ... 105
6.12. Handling Date and Time Information in Connector/Net .. 107

6.12.1. Fractional Seconds .. 107
6.12.2. Problems when Using Invalid Dates .. 107
6.12.3. Restricting Invalid Dates ... 107
6.12.4. Handling Invalid Dates ... 108
6.12.5. Handling NULL Dates .. 108

6.13. Using the MySqlBulkLoader Class ... 108
6.14. Using the MySQL Connector/Net Trace Source Object ... 110

6.14.1. Viewing MySQL Trace Information .. 111
6.14.2. Building Custom Listeners .. 113

6.15. Binary/Nonbinary Issues ... 115
6.16. Character Set Considerations for Connector/Net .. 115
6.17. Using Connector/Net with Crystal Reports ... 116

6.17.1. Creating a Data Source ... 116
6.17.2. Creating the Report ... 117
6.17.3. Displaying the Report ... 117

6.18. ASP.NET Provider Model .. 120
6.19. Working with Partial Trust / Medium Trust .. 122

6.19.1. Evolution of Partial Trust Support Across Connector/Net Versions 122
6.19.2. Configuring Partial Trust with Connector/Net Library Installed in GAC 123
6.19.3. Configuring Partial Trust with Connector/Net Library Not Installed in GAC 124

7. Connector/Net Connection String Options Reference .. 127
8. Connector/Net API Reference .. 135

8.1. MySql.Data.MySqlClient Namespace ... 135
8.1.1. MySql.Data.MySqlClientHierarchy ... 136
8.1.2. BaseCommandInterceptor ... 136
8.1.3. BaseExceptionInterceptor ... 137
8.1.4. MySqlCommand Class ... 137
8.1.5. MySqlCommandBuilder Class ... 199
8.1.6. MySqlException Class ... 216
8.1.7. MySqlHelper Class ... 217
8.1.8. MySqlErrorCode Enumeration ... 227

8.2. MySql.Data.Types Namespace ... 228
8.2.1. MySql.Data.TypesHierarchy ... 228
8.2.2. MySqlConversionException Class .. 228
8.2.3. MySqlDateTime Class ... 230

9. Connector/Net Support .. 239
9.1. Connector/Net Community Support ... 239
9.2. How to Report Connector/Net Problems or Bugs .. 239
9.3. Connector/Net Change History .. 239

A. MySQL Connector/Net Change History .. 241
A.1. Changes in MySQL Connector/Net Version 6.6 ... 243
A.2. Changes in MySQL Connector/Net Version 6.5 ... 245
A.3. Changes in MySQL Connector/Net Version 6.4 ... 247

A.3.1. Changes in MySQL Connector/Net 6.4.6 (2012-11-26) 247
A.3.2. Changes in MySQL Connector/Net 6.4.5 (2012-05-19) 249
A.3.3. Changes in MySQL Connector/Net 6.4.4 (2011-09-26) 250
A.3.4. Changes in MySQL Connector/Net 6.4.3 (2011-07-03) 251

MySQL Connector/Net Developer's Guide

v

A.3.5. Changes in MySQL Connector/Net 6.4.2 (2011-06-29) 251
A.3.6. Changes in MySQL Connector/Net 6.4.1 (2011-06-06, Alpha) 251
A.3.7. Changes in MySQL Connector/Net 6.4.0 (Unknown) ... 251

A.4. Changes in MySQL Connector/Net Version 6.3 ... 251
A.4.1. Changes in MySQL Connector/Net 6.3.9 (2012-04-11) 251
A.4.2. Changes in MySQL Connector/Net 6.3.8 (2011-12-16) 253
A.4.3. Changes in MySQL Connector/Net 6.3.7 (2011-06-22) 255
A.4.4. Changes in MySQL Connector/Net 6.3.6 (2011-01-03) 255
A.4.5. Changes in MySQL Connector/Net 6.3.5 (2010-10-12) 257
A.4.6. Changes in MySQL Connector/Net 6.3.4 (2010-09-01, Generally Available) 257
A.4.7. Changes in MySQL Connector/Net 6.3.3 (2010-07-27) 258
A.4.8. Changes in MySQL Connector/Net 6.3.2 (2010-05-24, Beta) 260
A.4.9. Changes in MySQL Connector/Net 6.3.1 (2010-03-02) 261
A.4.10. Changes in MySQL Connector/Net 6.3.0 (2010-02-16, Alpha) 262

A.5. Changes in MySQL Connector/Net Version 6.2 ... 262
A.5.1. Changes in MySQL Connector/Net 6.2.6 (Not yet released) 262
A.5.2. Changes in MySQL Connector/Net 6.2.5 (2011-07-01) 262
A.5.3. Changes in MySQL Connector/Net 6.2.4 (2010-08-30) 264
A.5.4. Changes in MySQL Connector/Net 6.2.3 (2010-04-10) 267
A.5.5. Changes in MySQL Connector/Net 6.2.2 (2009-12-22, Generally Available) 268
A.5.6. Changes in MySQL Connector/Net 6.2.1 (2009-11-16, Beta) 269
A.5.7. Changes in MySQL Connector/Net 6.2.0 (2009-10-21, Alpha) 270

A.6. Changes in MySQL Connector/Net Version 6.1 ... 271
A.6.1. Changes in MySQL Connector/Net 6.1.7 (Not released, Generally Available) 271
A.6.2. Changes in MySQL Connector/Net 6.1.6 (Not released, Generally Available) 271
A.6.3. Changes in MySQL Connector/Net 6.1.5 (2010-08-30, Generally Available) 271
A.6.4. Changes in MySQL Connector/Net 6.1.4 (2010-04-28, Generally Available) 273
A.6.5. Changes in MySQL Connector/Net 6.1.3 (2009-11-16, Generally Available) 275
A.6.6. Changes in MySQL Connector/Net 6.1.2 (2009-09-08, Generally Available) 276
A.6.7. Changes in MySQL Connector/Net 6.1.1 (2009-08-20, Beta) 277
A.6.8. Changes in MySQL Connector/Net 6.1.0 (2009-07-15, Alpha) 279

A.7. Changes in MySQL Connector/Net Version 6.0 ... 280
A.7.1. Changes in MySQL Connector/Net 6.0.8 (Not released) 280
A.7.2. Changes in MySQL Connector/Net 6.0.7 (2010-08-30) 280
A.7.3. Changes in MySQL Connector/Net 6.0.6 (2010-04-28) 281
A.7.4. Changes in MySQL Connector/Net 6.0.5 (2009-11-12) 283
A.7.5. Changes in MySQL Connector/Net 6.0.4 (2009-06-16) 288
A.7.6. Changes in MySQL Connector/Net 6.0.3 (2009-04-28) 289
A.7.7. Changes in MySQL Connector/Net 6.0.2 (2009-04-07, Beta) 290
A.7.8. Changes in MySQL Connector/Net 6.0.1 (2009-04-02, Beta) 290
A.7.9. Changes in MySQL Connector/Net 6.0.0 (2009-03-02, Alpha) 290

A.8. Changes in MySQL Connector/Net Version 5.3 ... 290
A.8.1. Changes in MySQL Connector/Net 5.3.0 (Not released) 290

A.9. Changes in MySQL Connector/Net Version 5.2 ... 290
A.9.1. Changes in MySQL Connector/Net 5.2.8 (Not released) 290
A.9.2. Changes in MySQL Connector/Net 5.2.7 (2009-07-15) 290
A.9.3. Changes in MySQL Connector/Net 5.2.6 (2009-04-28) 291
A.9.4. Changes in MySQL Connector/Net 5.2.5 (2008-11-19) 293
A.9.5. Changes in MySQL Connector/Net 5.2.4 (2008-11-13) 293
A.9.6. Changes in MySQL Connector/Net 5.2.3 (2008-08-19) 294
A.9.7. Changes in MySQL Connector/Net 5.2.2 (2008-05-12) 295
A.9.8. Changes in MySQL Connector/Net 5.2.1 (2008-02-27) 296
A.9.9. Changes in MySQL Connector/Net 5.2.0 (2008-02-11) 296

A.10. Changes in MySQL Connector/Net Version 5.1 .. 297
A.10.1. Changes in MySQL Connector/Net 5.1.8 (Not released) 297
A.10.2. Changes in MySQL Connector/Net 5.1.7 (2008-08-21) 297
A.10.3. Changes in MySQL Connector/Net 5.1.6 (2008-05-12) 298
A.10.4. Changes in MySQL Connector/Net 5.1.5 (Not released) 299

MySQL Connector/Net Developer's Guide

vi

A.10.5. Changes in MySQL Connector/Net 5.1.4 (2007-11-20) 299
A.10.6. Changes in MySQL Connector/Net 5.1.3 (2007-09-21, Beta) 300
A.10.7. Changes in MySQL Connector/Net 5.1.2 (2007-06-18) 301
A.10.8. Changes in MySQL Connector/Net 5.1.1 (2007-05-23) 301
A.10.9. Changes in MySQL Connector/Net 5.1.0 (2007-05-01) 301

A.11. Changes in MySQL Connector/Net Version 5.0 .. 302
A.11.1. Changes in MySQL Connector/Net 5.0.10 (Not released) 302
A.11.2. Changes in MySQL Connector/Net 5.0.9 (Not released) 302
A.11.3. Changes in MySQL Connector/Net 5.0.8 (2007-08-21) 302
A.11.4. Changes in MySQL Connector/Net 5.0.7 (2007-05-18) 303
A.11.5. Changes in MySQL Connector/Net 5.0.6 (2007-03-22) 303
A.11.6. Changes in MySQL Connector/Net 5.0.5 (2007-03-07) 304
A.11.7. Changes in MySQL Connector/Net 5.0.4 (Not released) 305
A.11.8. Changes in MySQL Connector/Net 5.0.3 (2007-01-05) 305
A.11.9. Changes in MySQL Connector/Net 5.0.2 (2006-11-06) 306
A.11.10. Changes in MySQL Connector/Net 5.0.1 (2006-10-01) 307
A.11.11. Changes in MySQL Connector/Net 5.0.0 (2006-08-08) 307

A.12. Changes in MySQL Connector/Net Version 1.0 .. 308
A.12.1. Changes in MySQL Connector/Net 1.0.11 (Not released) 308
A.12.2. Changes in MySQL Connector/Net 1.0.10 (2007-08-24) 308
A.12.3. Changes in MySQL Connector/Net 1.0.9 (2007-02-02) 308
A.12.4. Changes in MySQL Connector/Net 1.0.8 (2006-10-20) 310
A.12.5. Changes in MySQL Connector/Net 1.0.7 (2005-11-21) 311
A.12.6. Changes in MySQL Connector/Net 1.0.6 (2005-10-03) 311
A.12.7. Changes in MySQL Connector/Net 1.0.5 (2005-08-29) 312
A.12.8. Changes in MySQL Connector/Net 1.0.4 (2005-01-20) 312
A.12.9. Changes in MySQL Connector/Net 1.0.3 (2004-10-12, gamma) 313
A.12.10. Changes in MySQL Connector/Net 1.0.2 (2004-11-15, gamma) 314
A.12.11. Changes in MySQL Connector/Net 1.0.1 (2004-10-27, Beta) 314
A.12.12. Changes in MySQL Connector/Net 1.0.0 (2004-09-01) 315

A.13. Changes in MySQL Connector/Net Version 0.9.0 (30 August 2004) 316
A.14. Changes in MySQL Connector/Net Version 0.76 .. 319
A.15. Changes in MySQL Connector/Net Version 0.75 .. 320
A.16. Changes in MySQL Connector/Net Version 0.74 .. 320
A.17. Changes in MySQL Connector/Net Version 0.71 .. 322
A.18. Changes in MySQL Connector/Net Version 0.70 .. 322
A.19. Changes in MySQL Connector/Net Version 0.68 .. 324
A.20. Changes in MySQL Connector/Net Version 0.65 .. 325
A.21. Changes in MySQL Connector/Net Version 0.60 .. 325
A.22. Changes in MySQL Connector/Net Version 0.50 .. 325

B. Licenses for Third-Party Components .. 327
B.1. ANTLR 3.3 License .. 327
B.2. RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License ... 327
B.3. zlib License ... 328
B.4. ZLIB.NET License .. 328

vii

Preface and Legal Notices
This manual describes how to install, configure, and develop database applications using MySQL
Connector/Net, the driver that allows .NET applications to communicate with MySQL servers.

Legal Notices

Copyright © 1997, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government
contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc.,
500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the
safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark
of Oracle Corporation and/or its affiliates, and shall not be used without Oracle's express written
authorization. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this material is subject to the terms and
conditions of your Oracle Software License and Service Agreement, which has been executed and with
which you agree to comply. This document and information contained herein may not be disclosed,
copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle
or as specifically provided below. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

Legal Notices

viii

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is
built and produced, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products,
see Preface and Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you
can discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into
other languages, and downloadable versions in variety of formats, including HTML and PDF formats,
see the MySQL Documentation Library.

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

1

Chapter 1. MySQL Connector/Net
Connector/Net lets you easily develop .NET applications that require secure, high-performance
data connectivity with MySQL. It implements the required ADO.NET interfaces and integrates into
ADO.NET-aware tools. Developers can build applications using their choice of .NET languages.
Connector/Net is a fully managed ADO.NET driver written in 100% pure C#.

Connector/Net includes full support for:

• Features provided by MySQL Server up to and including MySQL Server version 5.5.

• Large-packet support for sending and receiving rows and BLOBs up to 2 gigabytes in size.

• Protocol compression, which enables compressing the data stream between the client and server.

• Connections using TCP/IP sockets, named pipes, or shared memory on Windows.

• Connections using TCP/IP sockets or Unix sockets on Unix.

• The Open Source Mono framework developed by Novell.

• Fully managed, does not utilize the MySQL client library.

This document is intended as a user's guide to Connector/Net and includes a full syntax reference.
Syntax information is also included within the Documentation.chm file included with the Connector/
Net distribution.

If you are using MySQL 5.0 or later, and Visual Studio as your development environment, you can also
use the MySQL Visual Studio Plugin. The plugin acts as a DDEX (Data Designer Extensibility) provider:
you can use the data design tools within Visual Studio to manipulate the schema and objects within a
MySQL database. For more information, see Chapter 4, Connector/Net Visual Studio Integration.

Note

Connector/Net 5.1.2 and later include the Visual Studio Plugin by default.

MySQL Connector/Net supports full versions of Visual Studio 2005, 2008, and 2010, although certain
features are only available in Visual Studio 2010 when using MySQL Connector/Net version 6.3.2
and later. Note that MySQL Connector/Net does not currently support Express versions of Microsoft
products, including Microsoft Visual Web Developer.

Key topics:

• For connection string properties when using the MySqlConnection class, see Chapter 7,
Connector/Net Connection String Options Reference.

2

3

Chapter 2. Connector/Net Versions

There are several versions of Connector/Net available:

• Connector/Net 6.6 includes support for MySQL Server 5.6, 5.5, 5.1, and 5.0. Important new features
include stored procedure debugging in Microsoft Visual Studio, support for pluggable authentication
including the ability to write you own authentication plugin, Entity Framework 4.3 Code First support,
and enhancements to partial trust support to allow hosting services to deploy applications without
installing the Connector/Net library in the GAC.

• Connector/Net 6.5 includes support for MySQL Server 5.6, 5.5, 5.1, and 5.0. Important new features
include interceptor classes for exceptions and commands, support for the MySQL 5.6 fractional
seconds feature, better partial-trust support, and better IntelliSense, including auto-completion when
editing stored procedures or .mysql files.

• Connector/Net 6.4 includes support for MySQL Server 5.5, 5.1, and 5.0. Important new features
include support for Windows authentication (when connecting to MySQL Server 5.5+), table caching
on the client side, simple connection fail-over support, and improved SQL generation from the Entity
Framework provider.

• Connector/Net 6.3 includes support for MySQL Server 5.5, 5.1, and 5.0. Important new features
include integration with Visual Studio 2010, such as availability of DDL T4 template for Entity
Framework, and a custom MySQL SQL Editor. Other features include refactored transaction scope:
Connector/Net now supports nested transactions in a scope where they use the same connection
string.

• Connector/Net 6.2 includes support for MySQL Server 5.5, 5.1, 5.0, and 4.1. Important new features
include a new logging system and client SSL certificates.

• Connector/Net 6.1 includes support for MySQL Server 5.5, 5.1, 5.0, and 4.1. Important new features
include the MySQL Website Configuration Tool and a Session State Provider.

• Connector/Net 6.0 includes support for MySQL Server 5.5, 5.1, 5.0, and 4.1.

This version of Connector/Net is no longer supported.

• Connector/Net 5.2 includes support for MySQL Server 5.5, 5.1, 5.0, and 4.1 features. Connector/
Net 5.2 also includes support for a new membership/role provider, Compact Framework 2.0, a new
stored procedure parser and improvements to GetSchema. Connector/Net 5.2 also includes the
Visual Studio Plugin as a standard installable component.

This version of Connector/Net is no longer supported.

• Connector/Net 5.1 includes support for MySQL Server 5.5, 5.1, 5.0, 4.1, and 4.0 features. Connector/
Net 5.1 also includes support for a new membership/role provider, Compact Framework 2.0, a new
stored procedure parser and improvements to GetSchema. Connector/Net 5.1 also includes the
Visual Studio Plugin as a standard installable component.

This version of Connector/Net is no longer supported.

• Connector/Net 5.0 includes support for MySQL Server 5.1, 5.0, 4.1 and 4.0 features. Connector/Net
5.0 also includes full support for the ADO.Net 2.0 interfaces and subclasses, includes support for the
usage advisor and performance monitor (PerfMon) hooks.

This version of Connector/Net is no longer supported.

• Connector/Net 1.0 includes support for MySQL Server 5.0, 4.1, and 4.0 features, and full
compatibility with the ADO.NET driver interface.

This version of Connector/Net is no longer supported.

4

The latest source code for Connector/Net can be downloaded from the MySQL public Subversion
server. For further details, see Section 3.3, “Installing Connector/Net from the Source Code”.

The following table shows the .NET Framework version required, and the MySQL Server version
supported by Connector/Net:

Table 2.1. Connector/Net Requirements for Related Products

Connector/Net
version

ADO.NET version
supported

.NET Framework
version required

MySQL Server
version
supported

Currently
supported

6.6 2.x+ 2.x+, 4.x+ for VS
2010 support

5.6, 5.5, 5.1, 5.0 Yes

6.5 2.x+ 2.x+, 4.x+ for VS
2010 support

5.6, 5.5, 5.1, 5.0 Yes

6.4 2.x+ 2.x+, 4.x+ for VS
2010 support

5.6, 5.5, 5.1, 5.0 Yes

6.3 2.x+ 2.x+, 4.x+ for VS
2010 support

5.6, 5.5, 5.1, 5.0 Yes

6.2 2.x+ 2.x+ 5.6, 5.5, 5.1, 5.0,
4.1

Yes

6.1 2.x+ 2.x+ 5.6, 5.5, 5.1, 5.0,
4.1

Yes

6.0 2.x+ 2.x+ 5.5, 5.1, 5.0, 4.1 Critical issues only

5.2 2.x+ 2.x+ 5.5, 5.1, 5.0, 4.1 No

5.1 2.x+ 2.x+ 5.5, 5.1, 5.0, 4.1,
4.0

No

5.0 2.x+ 2.x+ 5.0, 4.1, 4.0 No

1.0 1.x 1.x 5.0, 4.1, 4.0 No

Note

Version numbers for MySQL products are formatted as X.Y.Z, where Z=0
indicates alpha, Z=1 indicates beta, and Z>=2 indicates GA. However, Windows
tools (Control Panel, properties display) may show the version numbers as
XX.YY.ZZ. For example, the official MySQL formatted version number 5.0.9
may be displayed by Windows tools as 5.00.09. The two versions are the same;
only the number display format is different.

5

Chapter 3. Installing Connector/Net

Table of Contents
3.1. Installing Connector/Net on Windows .. 5

3.1.1. Installing Connector/Net using the Installer ... 5
3.1.2. Installing Connector/Net Using the Zip Packages .. 10

3.2. Installing Connector/Net on Unix with Mono ... 11
3.3. Installing Connector/Net from the Source Code ... 12

Connector/Net runs on any platform that supports the .NET framework. The .NET framework is
primarily supported on recent versions of Microsoft Windows, and is supported on Linux through the
Open Source Mono framework (see http://www.mono-project.com).

Connector/Net is available for download from http://dev.mysql.com/downloads/connector/net/.

3.1. Installing Connector/Net on Windows

On Windows, you can install either through a binary installation process or by downloading a zip file
with the Connector/Net components.

Before installing, ensure that your system is up to date, including installing the latest version of
the .NET Framework.

3.1.1. Installing Connector/Net using the Installer

Using the installer is the most straightforward method of installing Connector/Net on Windows and the
installed components include the source code, test code and full reference documentation.

You install Connector/Net through a Windows Installer (.msi) installation package, which can install
Connector/Net on all Windows operating systems. The MSI package is contained within a zip archive
named mysql-connector-net-version.zip, where version indicates the Connector/Net
version.

To install Connector/Net:

1. Double-click the MSI installer file extracted from the zip you downloaded. Click Next to start the
installation.

http://www.mono-project.com
http://dev.mysql.com/downloads/connector/net/

Installing Connector/Net using the Installer

6

2. You must choose the type of installation to perform.

Installing Connector/Net using the Installer

7

For most situations, the Typical installation is suitable. Click the Typical button and proceed to Step
5. A Complete installation installs all the available files. To conduct a Complete installation, click
the Complete button and proceed to step 5. To customize your installation, including choosing the
components to install and some installation options, click the Custom button and proceed to Step 3.

The Connector/Net installer will register the connector within the Global Assembly Cache (GAC) -
this will make the Connector/Net component available to all applications, not just those where you
explicitly reference the Connector/Net component. The installer will also create the necessary links
in the Start menu to the documentation and release notes.

3. If you have chosen a custom installation, you can select the individual components to install,
including the core interface component, supporting documentation (a CHM file) samples and
examples, and the source code. Select the items, and their installation level, and then click Next to
continue the installation.

Note

For Connector/Net 1.0.8 or lower and Connector 5.0.4 and lower the installer
will attempt to install binaries for both 1.x and 2.x of the .NET Framework.
If you only have one version of the framework installed, the connector
installation may fail. If this happens, you can choose the framework version
to be installed through the custom installation step.

Installing Connector/Net using the Installer

8

4. You will be given a final opportunity to confirm the installation. Click Install to copy and install the
files onto your machine.

Installing Connector/Net using the Installer

9

5. Once the installation has been completed, click Finish to exit the installer.

Installing Connector/Net Using the Zip Packages

10

Unless you choose otherwise, Connector/Net is installed in C:\Program Files\MySQL\MySQL
Connector Net X.X.X, where X.X.X is replaced with the version of Connector/Net you are
installing. New installations do not overwrite existing versions of Connector/Net.

Depending on your installation type, the installed components will include some or all of the following
components:

• bin: Connector/Net MySQL libraries for different versions of the .NET environment.

• docs: Connector/Net documentation in CHM format.

• samples: Sample code and applications that use the Connector/Net component.

• src: The source code for the Connector/Net component.

You may also use the /quiet or /q command-line option with the msiexec tool to install the
Connector/Net package automatically (using the default options) with no notification to the user. Using
this method the user cannot select options. Additionally, no prompts, messages or dialog boxes will be
displayed.

C:\> msiexec /package connector-net.msi /quiet

To provide a progress bar to the user during automatic installation, use the /passive option.

3.1.2. Installing Connector/Net Using the Zip Packages

Installing Connector/Net on Unix with Mono

11

If you have problems running the installer, you can download a zip file without an installer as
an alternative. That file is called mysql-connector-net-version-noinstall.zip. After
downloading the zip archive, extract the files to a location of your choice.

The file contains the following directories:

• bin: Connector/Net MySQL libraries for different versions of the .NET environment.

• Docs: Connector/Net documentation in CHM format.

• Samples: Sample code and applications that use the Connector/Net component.

Connector/Net 6.0.x has a different directory structure:

• Assemblies: A collection of DLLs that make up the connector functionality.

• Documentation: Connector/Net documentation in CHM format.

• Samples: sample code and applications that use the Connector/Net component.

Another zip file available for download contains the source code distribution. This file is named mysql-
connector-net-version-src.zip.

The file contains the following directories:

• Documentation: Source files to build the documentation into the compiled HTML (CHM) format.

• Installer: Source files to build the Connector/Net installer program.

• MySql.Data: Source files for the core data provider.

• MySql.VisualStudio: Source files for the Microsoft Visual Studio extensions.

• MySql.Web: Source files for the web providers. This includes code for the membership provider, role
provider and profile provider. These are used in ASP.NET web sites.

• Samples: Source files for several example applications.

• Tests: A spreadsheet listing test cases.

• VisualStudio: Resources used by the Visual Studio plugin.

Finally, ensure that MySql.Data.dll is accessible to your program at build time (and run time). If
using Microsoft Visual Studio, add MySql.Data as a Reference to your project.

Note

If using MySQL Connector/Net 6.3.5 and above, the MySql.Data.dll file
provided will work with both .NET Framework 2.x and 4.x.

3.2. Installing Connector/Net on Unix with Mono
There is no installer available for installing the Connector/Net component on your Unix installation.
Before installing, ensure that you have a working Mono project installation. To test whether your
system has Mono installed, enter:

shell> mono --version

The version of the Mono JIT compiler is displayed.

To compile C# source code, make sure a Mono C# compiler is installed. Note that there are two Mono
C# compilers available, mcs, which accesses the 1.0-profile libraries, and gmcs, which accesses the
2.0-profile libraries.

Installing Connector/Net from the Source Code

12

To install Connector/Net on Unix/Mono:

1. Download the mysql-connector-net-version-noinstall.zip and extract the contents to a
directory of your choice, for example: ~/connector-net/.

2. In the directory where you unzipped the connector to, change into the bin subdirectory. Ensure the
file MySql.Data.dll is present. This filename is case-sensitive.

3. You must register the Connector/Net component, MySql.Data, in the Global Assembly Cache
(GAC). In the current directory enter the gacutil command:

root-shell> gacutil /i MySql.Data.dll

This will register MySql.Data into the GAC. You can check this by listing the contents of /usr/
lib/mono/gac, where you will find MySql.Data if the registration has been successful.

You are now ready to compile your application. You must ensure that when you compile your
application you include the Connector/Net component using the -r: command-line option. For
example:

shell> gmcs -r:System.dll -r:System.Data.dll -r:MySql.Data.dll HelloWorld.cs

Note, the assemblies that are referenced depend on the requirements of the application, but
applications using Connector/Net must provide -r:MySql.Data as a minimum.

You can further check your installation by running the compiled program, for example:

shell> mono HelloWorld.exe

3.3. Installing Connector/Net from the Source Code

Caution

Read this section only if you are interested in helping us test our new code.
If you just want to get Connector/Net up and running on your system, use a
standard release distribution.

Obtaining the Source Code

To obtain the most recent development source tree, first download and install Bazaar. You can obtain
Bazaar from the Bazaar VCS Website. Bazaar is supported by any platform that supports Python, and
is therefore compatible with any Linux, Unix, Windows or Mac OS X host. Instructions for downloading
and installing Bazaar on the different platforms are available on the Bazaar Web site.

The most recent development source tree is available from our public Subversion trees at http://
dev.mysql.com/tech-resources/sources.html.

To check out out the Connector/Net sources, change to the directory where you want the copy of the
Connector/Net tree to be stored, then use the following command:

shell> bzr branch lp:connectornet/trunk

To download a specific version of Connector/Net, specify the version number instead of trunk. For
example, to obtain a copy of the 6.0 version of the source tree:

shell> bzr branch lp:connectornet/6.0

Source packages are also available on the downloads page.

Building the Source Code on Windows

The following procedure can be used to build the connector on Microsoft Windows.

http://bazaar-vcs.org
http://dev.mysql.com/tech-resources/sources.html
http://dev.mysql.com/tech-resources/sources.html

Building the Source Code on Unix

13

• Obtain the source code, either from the Subversion server, or through one of the prepared source
code packages.

• Navigate to the root of the source code tree.

• A Microsoft Visual Studio 2005 solution file is available to build the connector, this is called MySQL-
VS2005.sln. Click this file to load the solution into Visual Studio.

• Select Build, Build Solution from the main menu to build the solution.

Building the Source Code on Unix

Support for building Connector/Net on Mono/Unix is currently not available.

14

15

Chapter 4. Connector/Net Visual Studio Integration

Table of Contents
4.1. Making a Connection .. 15
4.2. Using IntelliSense in the SQL Editor ... 17
4.3. Editing Tables .. 18

4.3.1. Column Editor ... 19
4.3.2. Editing Indexes .. 20
4.3.3. Editing Foreign Keys ... 20
4.3.4. Column Properties ... 21
4.3.5. Table Properties .. 21

4.4. Editing Views ... 23
4.5. Editing Stored Procedures and Functions .. 24
4.6. Editing Triggers .. 26
4.7. Editing User Defined Functions (UDF) ... 27
4.8. Debugging Stored Procedures and Functions .. 27
4.9. Cloning Database Objects .. 37
4.10. Dropping Database Objects .. 37
4.11. Using the ADO.NET Entity Framework .. 37
4.12. MySQL Website Configuration Tool ... 38
4.13. MySQL SQL Editor ... 42
4.14. DDL T4 Template Macro .. 43

When MySQL Connector/Net is installed on Microsoft Windows, Visual Studio integration components
are also installed and initialized. This enables the developer to work seamlessly with MySQL
Connector/Net in the familiar Visual Studio environment, as described in the following sections of the
manual.

MySQL Connector/Net supports Visual Studio versions 2005, 2008, and 2010. However, only MySQL
Connector/Net version 6.3 and higher fully integrate with Visual Studio 2010, although applications
using earlier versions of the connector can be built with the Visual Studio 2010 environment using .NET
2.x frameworks.

Visual Studio 2010 support was introduced with MySQL Connector/Net 6.3.2. From version 6.3.2
the connector ships with both .NET 2.x and .NET 4.x versions of the entity framework support files,
mysql.data.ef.dll and mysql.visualstudio.dll. The .NET 4.x versions are required to
enable new integration features supported in Visual Studio 2010, including:

• New DDL T4 template for the Entity Framework (EF) - This enables developers to design an EF
model from scratch and use the native Visual Studio 2010 facility to generate MySQL DDL from that
model. This is done by creating the model, and with the model open, choosing the SSDLToMySQL
template in the properties window. The correct DDL is then generated. The developer can then save
this code as a .mysql file in their project and execute it against the MySQL server.

• New SQL Editor - A new SQL editor lets you connect to a MySQL server to execute SQL. This is
activated by creating a new file with a .mysql extension. A new template lets you create files with
this file type using the Visual Studio 2010 main menu item File, New. Note that the MySQL SQL
Editor is also available in Visual Studio 2005 and 2008.

4.1. Making a Connection
Once the connector is installed, you can use it to create, modify, and delete connections to MySQL
databases. To create a connection with a MySQL database, perform the following steps:

• Start Visual Studio, and open the Server Explorer window (View, Server Explorer option in the main
Visual Studio menu, or Control+W, L keyboard shortcuts).

Making a Connection

16

• Right-click the Data Connections node, and choose the Add Connection... menu item.

• Add Connection dialog opens. Press the Change button to choose MySQL Database as a data
source.

Figure 4.1. Add Connection Context Menu

• Change Data Source dialog opens. Choose MySQL Database in the list of data sources (or the
<other> option, if MySQL Database is absent), and then choose .NET Framework Data Provider
for MySQL in the combo box of data providers.

Figure 4.2. Choose Data Source

• Input the connection settings: the server host name (for example, localhost if the MySQL server is
installed on the local machine), the user name, the password, and the default schema name. Note
that you must specify the default schema name to open the connection.

Using IntelliSense in the SQL Editor

17

Figure 4.3. Add Connection Dialog

• You can also set the port to connect with the MySQL server by pressing the Advanced button. To
test connection with the MySQL server, set the server host name, the user name, and the password,
and press the Test Connection button. If the test succeeds, the success confirmation dialog opens.

• After you set all settings and test the connection, press OK. The newly created connection is
displayed in Server Explorer. Now you can work with the MySQL server through standard Server
Explorer GUI.

Figure 4.4. New Data Connection

After the connection is successfully established, all settings are saved for future use. When you start
Visual Studio for the next time, open the connection node in Server Explorer to establish a connection
to the MySQL server again.

To modify and delete a connection, use the Server Explorer context menu for the corresponding node.
You can modify any of the settings by overwriting the existing values with new ones. Note that the
connection may be modified or deleted only if no active editor for its objects is opened: otherwise, you
may lose your data.

4.2. Using IntelliSense in the SQL Editor
IntelliSense support is available starting in Connector/Net 6.5. Once you have established a
connection, for example, using the Connect to MySql toolbar button, you can get autocompletion as

Editing Tables

18

you type, or by pressing Control+J. Depending on the context, the autocompletion dialog can show the
list of available tables, table columns, or stored procedures (with the routine's signature as a tooltip).
Typing some characters before pressing Control+J filters the choices to those items starting with that
prefix.

4.3. Editing Tables

Connector/Net contains a table editor, which enables the visual creation and modification of tables.

The Table Designer can be accessed through a mouse action on table-type node of Server Explorer.
To create a new table, right-click the Tables node (under the connection node) and choose the Create
Table command from the context menu.

To modify an existing table, double-click the node of the table to modify, or right-click this node and
choose the Design item from the context menu. Either of the commands opens the Table Designer.

The table editor is implemented in the manner of the well-known Query Browser Table Editor, but with
minor differences.

Figure 4.5. Editing New Table

Table Designer consists of the following parts:

• Columns Editor - a data grid on top of the Table Designer. Use the Columns grid for column creation,
modification, and deletion.

• Indexes tab - a tab on bottom of the Table Designer. Use the Indexes tab for indexes management.

• Foreign Keys tab - a tab on bottom of the Table Designer. Use the Foreign Keys tab for foreign keys
management.

Column Editor

19

• Column Details tab - a tab on bottom of the Table Designer. Use the Column Details tab to set
advanced column options.

• Properties window - a standard Visual Studio Properties window, where the properties of the edited
table are displayed. Use the Properties window to set the table properties.

Each of these areas is discussed in more detail in subsequent sections.

To save changes you have made in the Table Designer, use either Save or Save All button of the
Visual Studio main toolbar, or press Control+S. If you have not already named the table, you will be
prompted to do so.

Figure 4.6. Choose Table Name

Once the table is created, you can view it in the Server Explorer.

Figure 4.7. Newly Created Table

The Table Designer main menu lets you set a primary key column, edit relationships such as foreign
keys, and create indexes.

Figure 4.8. Table Designer Main Menu

4.3.1. Column Editor

You can use the Column Editor to set or change the name, data type, default value, and other
properties of a table column. To set the focus to a needed cell of a grid, use the mouse click. Also you
can move through the grid using Tab and Shift+Tab keys.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_index

Editing Indexes

20

To set or change the name, data type, default value and comment of a column, activate the appropriate
cell and type the desired value.

To set or unset flag-type column properties (NOT NULL, auto incremented, flags), check or uncheck the
corresponding check boxes. Note that the set of column flags depends on its data type.

To reorder columns, index columns or foreign key columns in the Column Editor, select the whole
column to reorder by clicking the selector column on the left of the column grid. Then move the column
by using Control+Up (to move the column up) or Control+Down (to move the column down) keys.

To delete a column, select it by clicking the selector column on the left of the column grid, then press
the Delete button on a keyboard.

4.3.2. Editing Indexes

Indexes management is performed using the Indexes/Keys dialog.

To add an index, select Table Designer, Indexes/Keys... from the main menu, and click Add to add a
new index. You can then set the index name, index kind, index type, and a set of index columns.

Figure 4.9. Indexes Dialog

To remove an index, select it in the list box on the left, and click the Delete button.

To change index settings, select the needed index in the list box on the left. The detailed information
about the index is displayed in the panel on the right hand side. Change the desired values.

4.3.3. Editing Foreign Keys

You manage foreign keys for InnoDB tables using the Foreign Key Relationships dialog.

To add a foreign key, select Table Designer, Relationships... from the main menu. This displays the
Foreign Key Relationship dialog. Click Add. You can then set the foreign key name, referenced table
name, foreign key columns, and actions upon update and delete.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html

Column Properties

21

To remove a foreign key, select it in the list box on the left, and click the Delete button.

To change foreign key settings, select the required foreign key in the list box on the left. The detailed
information about the foreign key is displayed in the right hand panel. Change the desired values.

Figure 4.10. Foreign Key Relationships Dialog

4.3.4. Column Properties

The Column Properties tab can be used to set column options. In addition to the general column
properties presented in the Column Editor, in the Column Properties tab you can set additional
properties such as Character Set, Collation and Precision.

4.3.5. Table Properties

To bring up Table Properties select the table and right-click to activate the context menu. Select
Properties. The Table Properties dockable window will be displayed.

Table Properties

22

Figure 4.11. Table Properties Menu Item

The following table properties can be set:

• Auto Increment.

• Average Row Length.

• Character Set.

• Collation.

• Comment.

• Data Directory.

• Index Directory.

• Maximum Rows.

• Minimum Rows.

• Name.

• Row Format.

• Schema.

• Storage Engine. Note that in MySQL 5.5 and higher, the default storage engine for new tables is
InnoDB. See InnoDB as the Default MySQL Storage Engine for more information about the choice
of storage engine, and considerations if you convert existing tables to InnoDB.

The property Schema is read-only.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_storage_engine
http://dev.mysql.com/doc/refman/5.5/en/innodb-default-se.html

Editing Views

23

Figure 4.12. Table Properties

4.4. Editing Views
To create a new view, right-click the Views node under the connection node in Server Explorer. From
the node's context menu, choose the Create View command. This command opens the SQL Editor.

Figure 4.13. Editing View SQL

You can then enter the SQL for your view.

Figure 4.14. View SQL Added

To modify an existing view, double-click a node of the view to modify, or right-click this node and
choose the Alter View command from a context menu. Either of the commands opens the SQL Editor.

All other view properties can be set in the Properties window. These properties are:

• Catalog

Editing Stored Procedures and Functions

24

• Check Option

• Definer

• Definition

• Definer

• Is Updatable

• Name

• Schema

• Security Type

Some of these properties can have arbitrary text values, others accept values from a predefined set. In
the latter case, set the desired value with an embedded combobox.

The properties Is Updatable and Schema are readonly.

To save changes you have made, use either Save or Save All buttons of the Visual Studio main
toolbar, or press Control+S.

Figure 4.15. View SQL Saved

4.5. Editing Stored Procedures and Functions

To create a new stored procedure, right-click the Stored Procedures node under the connection
node in Server Explorer. From the node's context menu, choose the Create Routine command. This
command opens the SQL Editor.

Editing Stored Procedures and Functions

25

Figure 4.16. Edit Stored Procedure SQL

To create a new stored function, right-click the Functions node under the connection node in Server
Explorer. From the node's context menu, choose the Create Routine command.

To modify an existing stored routine (procedure or function), double-click the node of the routine to
modify, or right-click this node and choose the Alter Routine command from the context menu. Either
of the commands opens the SQL Editor.

To create or alter the routine definition using SQL Editor, type this definition in the SQL Editor using
standard SQL. All other routine properties can be set in the Properties window. These properties are:

• Body

• Catalog

• Comment

• Creation Time

• Data Access

• Definer

• Definition

• External Name

• External Language

• Is Deterministic

• Last Modified

• Name

• Parameter Style

• Returns

• Schema

• Security Type

• Specific Name

• SQL Mode

• SQL Path

• Type

Some of these properties can have arbitrary text values, others accept values from a predefined set. In
the latter case, set the desired value using the embedded combo box.

Editing Triggers

26

You can also set all the options directly in the SQL Editor, using the standard CREATE PROCEDURE or
CREATE FUNCTION statement. However, it is recommended to use the Properties window instead.

To save changes you have made, use either Save or Save All buttons of the Visual Studio main
toolbar, or press Control+S.

Figure 4.17. Stored Procedure SQL Saved

To observe the runtime behavior of a stored routine and debug any problems, use the Stored
Procedure Debugger (available in Connector/Net 6.6 and higher). See Section 4.8, “Debugging Stored
Procedures and Functions” for details.

4.6. Editing Triggers
To create a new trigger, right-click the node of the table in which to add the trigger. From the node's
context menu, choose the Create Trigger command. This command opens the SQL Editor.

To modify an existing trigger, double-click the node of the trigger to modify, or right-click this node and
choose the Alter Trigger command from the context menu. Either of the commands opens the SQL
Editor.

To create or alter the trigger definition using SQL Editor, type the trigger statement in the SQL Editor
using standard SQL.

Note

Enter only the trigger statement, that is, the part of the CREATE TRIGGER query
that is placed after the FOR EACH ROW clause.

All other trigger properties are set in the Properties window. These properties are:

• Definer

• Event Manipulation

• Name

• Timing

Some of these properties can have arbitrary text values, others accept values from a predefined set. In
the latter case, set the desired value using the embedded combo box.

The properties Event Table, Schema, and Server in the Properties window are read-only.

To save changes you have made, use either Save or Save All buttons of the Visual Studio main
toolbar, or press Control+S. Before changes are saved, you will be asked to confirm the execution of
the corresponding SQL query in a confirmation dialog.

To observe the runtime behavior of a stored routine and debug any problems, use the Stored
Procedure Debugger (available in Connector/Net 6.6 and higher). See Section 4.8, “Debugging Stored
Procedures and Functions” for details.

http://dev.mysql.com/doc/refman/5.5/en/create-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/create-function.html
http://dev.mysql.com/doc/refman/5.5/en/create-trigger.html

Editing User Defined Functions (UDF)

27

4.7. Editing User Defined Functions (UDF)

To create a new User Defined Function (UDF), right-click the UDFs node under the connection node
in Server Explorer. From the node's context menu, choose the Create UDF command. This command
opens the UDF Editor.

To modify an existing UDF, double-click the node of the UDF to modify, or right-click this node and
choose the Alter UDF command from the context menu. Either of these commands opens the UDF
Editor.

The UDF editor enables you to set the following properties:

• Name

• So-name (DLL name)

• Return type

• Is Aggregate

There are text fields for both names, a combo box for the return type, and a check box to indicate if the
UDF is aggregate. All these options are also accessible using the Properties window.

The property Server in the Properties window is read-only.

To save changes you have made, use either Save or Save All buttons of the Visual Studio main
toolbar, or press Control+S. Before changes are saved, you will be asked to confirm the execution of
the corresponding SQL query in a confirmation dialog.

To observe the runtime behavior of a stored routine and debug any problems, use the Stored
Procedure Debugger (available in Connector/Net 6.6 and higher). See Section 4.8, “Debugging Stored
Procedures and Functions” for details.

4.8. Debugging Stored Procedures and Functions

The stored procedure debugger, new in Connector/Net 6.6, provides facilities for setting breakpoints,
stepping into individual statements (Step Into, Step Out, Step Over), evaluating and changing local
variable values, evaluating breakpoints, and other typical debugging tasks.

Installing the Debugger

To enable the stored procedure debugger, install Connector/Net 6.6 or higher and choose the
Complete option.

Privileges

The debugger recreates at the start of each debug session a serversidedebugger database in your
server. This database helps to track the instrumented code and implement observability logic in the
debugged routine. Your current connection needs to have privileges to create that database, and its
associated stored routines, functions, and tables.

The debugger makes changes behind the scenes to temporarily add instrumentation code to the stored
routines that you debug. You must have the ALTER ROUTINE privilege for each stored procedure,
function, or trigger that you debug. (Including procedures and functions that are called, and triggers that
are fired, by a procedure that you are debugging.)

Starting the Debugger

To start the debugger, follow these steps:

Starting the Debugger

28

• Choose a connection in the Visual Studio Server Explorer.

Figure 4.18. Connection Dialog

• Expand the Stored Procedures folder. Only stored procedures can be debugged directly. To
debug a user-defined function, create a stored procedure that calls the function.

• Click on a stored procedure node, then right-click and from the context menu choose Debug
Routine.

Figure 4.19. Choose a Stored Routine to Debug

At this point, Visual Studio switches to debug mode, opening the source code of the routine being
debugged in step mode, positioned on the first statement.

If the initial routine you debug has one or more arguments, a popup will show up with a grid (a row per
each argument and three columns: one for the argument, one for the argument value (this is editable)

How the Debugger Works

29

and one for nullifying that argument value (a checkbox)). After setting up all the argument values, you
can press OK to start the debug session, or Cancel to cancel the debug session.

Figure 4.20. Setting Arguments (1 of 2)

Figure 4.21. Setting Arguments (2 of 2)

How the Debugger Works

To have visibility into the internal workings of a stored routine, the debugger prepares a special version
of the procedure, function, or trigger being debugged, instrumented with extra code to keep track of the
current line being stepped into and the values of all the local variables. Any other stored procedures,
functions, or triggers called from the routine being debugged are instrumented the same way. The
debug versions of the routines are prepared for you automatically, and when the debug session ends
(by either pressing F5 or Shift+F5), the original versions of the routines are automatically restored.

Basic Debugging Operations

30

A copy of the original version of each instrumented routine (the version without
instrumentation) is stored in the AppData\Roaming\MySqlDebuggerCache
folder for the current Windows user (the path returned by calling
System.Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData)
in .NET, plus appending MySqlDebuggerCache. There is one file for each instrumented routine,
named routine_name.mysql. For example, in Windows 7, for a user named fergs, the path is C:
\Users\fergs\AppData\Roaming\MySqlDebuggerCache.

Two threads are used, one for the debugger and one for the routine being debugged. The threads run
in strict alternation, switching between the debugger and the routine as each statement is executed in
the stored routine.

Basic Debugging Operations

The debugger has the same look and feel as the standard Visual Studio debuggers for C#, VB.NET or
C++. In particular, the following are true:

Locals and Watches

• To show the Locals tab, choose the menu item Debug -> Windows -> Locals.

The Locals tab lists all the variables available in the current scope: variables defined with DECLARE
at any point in the routine, argument parameters, and session variables that are referenced.

• If the last step operation changes the value of a local, its value will be highlighted in red (until another
statement is executed or stepped.

• You can change the value of any local.

• To show the Watch tab, choose the menu item Debug -> Windows -> Watch.

To define a watch, type any valid MySQL expression, optionally including function calls. If the watch
evaluation makes sense in the current context (current stack frame), it will show its value, otherwise
it will show an error message in the same row the watch was defined.

• When debugging a trigger, in addition to any locals declared or session variables referenced, the
new and old object (when aplicable) will be listed. For example in a trigger for INSERT, for a table
defined like:

create table t1(id int, myname varchar(50));

the locals will list the extra variables new.id and new.myname. For an UPDATE trigger, you will also
get the extra variables old.id and old.myname. These variables from the new and old objects can
be manipulated the same way as any ordinary local variable.

Basic Debugging Operations

31

Figure 4.22. Debugging a Trigger

Call Stack

• To show the Call Stack tab, choose the menu item Debug -> Windows -> Call Stack.

• The stack trace (in the Call Stack tab) will list all the stack traces, one for each routine invocation.
The one with a yellow mark is the current stepping point. Clicking in another will activate in the editor
the tab for that routine source, highlighting in green the last statement stepped.

Basic Debugging Operations

32

Figure 4.23. Call Stack

Stepping

• Stepping of a new routine starts in the first executable instruction (excluding declares, handlers,
cursor declarations, and so on).

Basic Debugging Operations

33

Figure 4.24. Debug Stepping

Figure 4.25. Function Stepping (1 of 2)

Basic Debugging Operations

34

Figure 4.26. Function Stepping (2 of 2)

• To step into the code of a condition handler, the condition must be triggered in the rest of the MySQL
routine.

• The next statement to be executed is highlighted in yellow.

• To continue stepping, you can choose between Step Into (by pressing F11), Step Out (by pressing
F10) or Step Over (by presssing Shift+F11).

• You can step out of any of functions, triggers or stored procedures. If you step from the main routine,
it will run that routine to completion and finish the debug session.

• You can step over stored procedure calls, stored functions, and triggers. (To step over a trigger, step
over the statement that would cause the trigger to fire.)

• When stepping into a single statement, the debugger will step into each individual function invoked
by that statement and each trigger fired by that statement. The order in which they are debugged is
the same order in which the MySQL server executes them.

• You can step into triggers triggered from INSERT, DELETE, UPDATE, and REPLACE statements.

• Also, the number of times you enter into a stored function or trigger depends on how many rows are
evaluated by the function or affected by the trigger. For example, if you press F11 (Step Into) into
an UPDATE statement that modifies three rows (calling a function for a column in the SET clause,
thus invoking the function for each of the three rows), you will step into into that function three times
in succession, once for each of the rows. You can accelerate this debug session by disabling any
breakpoints defined in the given stored function and pressing Shift+F11 to step out. In this example,
the order in which the different instances of the stored function are debugged is server-specific: the
same order used by the current MySQL server instance to evaluate the three function invocations.

Breakpoints

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/replace.html

Basic Debugging Operations

35

• To show the Breakpoints tab, choose the menu item Debug -> Windows -> Breakpoints.

• The Breakpoints tab will show all the breakpoints defined. From here, you can enable and disable
breakpoints one by one or all at once (using the toolbar on top of the Breakpoints tab).

• You can define new breakpoints only in the middle of a debug session. Click in the left gray border
of any MySQL editor, or click anywhere in a MySQL editor and press F9. In the familiar Visual
Studio way, you press F9 once to create a breakpoint in that line, and press it again to remove that
breakpoint.

• Once a breakpoint is defined, it will appear enabled (as filled red circle left to the current row if that
line is a valid statement to put a breakpoint) or disabled (as a non-filled red circle left to the current
row if that row is not valid to put a breakpoint).

• To define conditional breakpoints, after creating the breakpoint, right click in the red dot and choose
Condition.... There you can put any valid MySQL expression and state if the condition is Is True or
Has changed. The former will trigger the breakpoint every time the condition is true, the latter every
time the condition value has changed. (If you define a conditional breakpoint, it is not enough to step
into the line with the breakpoint defined to trigger such a breakpoint.)

Figure 4.27. Conditional Breakpoints

Other Features

36

Figure 4.28. Expressions and Breakpoints

• To define pass count breakpoints, after creating the breakpoint, right click in the red dot and choose
Hit Count.... In the popup dialog, define the specific condition to set. For example, break when the
hit count is equal to and a value 3 will trigger the breakpoint the third time it is hit.

Other Features

• To abort the debug session (and the execution of the current call stack of routines), press Shift+F5.

• To run the routine to completion (or until next breakpoint hit), press F5.

• For all functionality you can use (in addition to the shortcuts documented), see the options in the
Debug menu of Visual Studio.

Limitations

• Code being debugged must not use get_lock or release_lock MySQL functions, since they
are used internally by the debugger infrastructure to synchronize the debugger and the debugged
routine.

• Code being debugged must avoid using any transaction code (START TRANSACTION, COMMIT,
ROLLBACK) due to the possibility of wiping out the contents of the debugger tables. (This limitation
may be removed in the future).

• You cannot debug the routines in the serversidedebugger database.

• The MySQL server running the routine being debugged can be any version between 5.0 and 5.6,
running on Windows, Linux, or any other supported platform.

• We recommend always running debug sessions on test and development servers, rather than
against a MySQL production server, because debugging can cause temporary performance issues
or even deadlocks. The instrumented versions of the routines being debugged use locks, that the
rest of the production code may not be aware of.

Keyboard Shortcuts

37

Keyboard Shortcuts

The following list summarizes the keyboard shortcuts for debugging:

• F9 Toggles breakpoints

• F11: Step into once

• F10: Step over once

• Shift+F11: Step out once

• F5: Run

• Shift+F5: Abort current debug session

4.9. Cloning Database Objects

Tables, views, stored procedures, and functions can be cloned using the appropriate Clone command
from the context menu: Clone Table, Clone View, Clone Routine. The clone commands open the
corresponding editor for a new object: the Table Editor for cloning a table, and the SQL Editor for
cloning a view or a routine.

The editor is filled with values of the original object. You can modify these values in the usual manner.

To save the cloned object, use either Save or Save All buttons of the Visual Studio main toolbar,
or press Control+S. Before changes are saved, you will be asked to confirm the execution of the
corresponding SQL query in a confirmation dialog.

4.10. Dropping Database Objects

Tables, views, stored routines, triggers, and UDFs can be dropped with the appropriate Drop command
selected from its context menu: Drop Table, Drop View, Drop Routine, Drop Trigger, Drop UDF.

You will be asked to confirm the execution of the corresponding drop query in a confirmation dialog.

You can only drop a single object at a time.

4.11. Using the ADO.NET Entity Framework

Connector/Net 6.0 introduced support for the ADO.NET Entity Framework. ADO.NET Entity Framework
was included with .NET Framework 3.5 Service Pack 1, and Visual Studio 2008 Service Pack 1.
ADO.NET Entity Framework was released on 11th August 2008.

ADO.NET Entity Framework provides an Object Relational Mapping (ORM) service, mapping the
relational database schema to objects. The ADO.NET Entity Framework defines several layers, these
can be summarized as:

• Logical - this layer defines the relational data and is defined by the Store Schema Definition
Language (SSDL).

• Conceptual - this layer defines the .NET classes and is defined by the Conceptual Schema
Definition Language (CSDL)

• Mapping - this layer defines the mapping from .NET classes to relational tables and associations,
and is defined by Mapping Specification Language (MSL).

Connector/Net integrates with Visual Studio 2008 to provide a range of helpful tools to assist the
developer.

MySQL Website Configuration Tool

38

A full treatment of ADO.NET Entity Framework is beyond the scope of this manual. If you are unfamiliar
with ADO.NET, review the Microsoft ADO.NET Entity Framework documentation.

Tutorials on getting started with ADO.NET Entity Framework are available. See Section 5.5, “Tutorial:
Using an Entity Framework Entity as a Windows Forms Data Source” and Section 5.6, “Tutorial:
Databinding in ASP.NET using LINQ on Entities”.

4.12. MySQL Website Configuration Tool

MySQL Connector/Net 6.1 introduced the MySQL Website Configuration Tool. This is a facility
available in Visual Studio that enables you to configure the Membership, Role, Session State and
Profile Provider, without editing configuration files. You set your configuration options within the tool,
and the tool modifies your web.config file accordingly.

The MySQL Website Configuration Tool appears as a small icon on the Solution Explorer toolbar in
Visual Studio, as show by the following screenshot:

Figure 4.29. MySQL Website Configuration Tool

Clicking the Website Configuration Tool icon launches the wizard and displays the first screen:

Figure 4.30. MySQL Website Configuration Tool - Membership

This allows you to enable use of the MySQL Membership Provider. Click the check box to enable this.
You can now enter the name of the application that you are creating the configuration for. You can also
enter a description for the application.

You can then click the Edit... button to launch the Connection String Editor:

http://msdn.microsoft.com/en-us/library/aa697427(VS.80).aspx

MySQL Website Configuration Tool

39

Figure 4.31. MySQL Website Configuration Tool - Connection String Editor

Note that if you have already defined a connection string for the providers manually in web.config, or
previously using the tool, this will be automatically loaded and displayed, and can then be modified in
this dialog.

You can also ensure that the necessary schemas are created automatically for you by selecting the
Autogenerate Schema check box. These schemas are used to store membership information. The
database used to storage is the one specified in the connection string.

You can also ensure that exceptions generated by the application will be written to the Windows event
log by selecting the Write exceptions to event log check box.

Clicking the Advanced... button launches a dialog that enables you to set Membership Options.
These options dictate such variables as password length required when a user signs up, whether the
password is encrypted and whether the user can reset their password or not.

MySQL Website Configuration Tool

40

Figure 4.32. MySQL Website Configuration Tool - Advanced Options

Once information has been set up as required for configuration of the Membership Provider, the Next
button can be clicked to display the Roles Provider screen:

Figure 4.33. MySQL Website Configuration Tool - Roles

MySQL Website Configuration Tool

41

Again the connection string can be edited, a description added and Autogenerate Schema can be
enabled before clicking Next to go to the Profiles Provider screen:

Figure 4.34. MySQL Website Configuration Tool - Profiles

This screen display similar options to the previous screens.

Click Next to proceed to the Session State configuration page:

Figure 4.35. MySQL Website Configuration Tool - Session State

Once you have set up the Session State Provider as required, click Finish to exit the wizard.

At this point, select the Authentication Type to From Internet. Launch the ASP.NET Configuration
Tool and select the Security tab. Click the Select authentication type link and ensure that the

MySQL SQL Editor

42

From the internet radio button is selected. You can now examine the database you created to store
membership information. All the necessary tables will have been created for you:

Figure 4.36. MySQL Website Configuration Tool - Tables

4.13. MySQL SQL Editor

MySQL Connector/Net 6.3.2 introduced a new MySQL SQL Editor. The easiest way to invoke the
editor is by selecting the New, File menu item from the Visual Studio main menu. This displays the
New File dialog:

Figure 4.37. MySQL SQL Editor - New File

From the New File dialog, select the MySQL template, and then double-click the MySQL SQL Script
document, or click the Open button.

DDL T4 Template Macro

43

The MySQL SQL Editor will be displayed. You can now enter SQL code as required, or connect to a
MySQL server. Click the Connect to MySQL button in the MySQL SQL Editor toolbar. You can enter
the connection details into the Connect to MySQL dialog that is displayed. You can enter the server
name, user ID, password and database to connect to, or click the Advanced button to select other
connection string options. Click the Connect button to connect to the MySQL server. To execute your
SQL code against the server, click the Run SQL button on the toolbar.

Figure 4.38. MySQL SQL Editor - Query

The results from any queries are displayed on the Results tab. Any errors are displayed on the
Messages tab.

4.14. DDL T4 Template Macro

MySQL Connector/Net 6.3 introduced the ability to convert an Entity Framework model to MySQL DDL
code. Starting with a blank model, you can develop an entity model in Visual Studio's designer. Once
the model is created, you can select the model's properties, and in the Database Script Generation
category of the model's properties, the property DDL Generation can be found. Select the value
SSDLToMySQL.tt(VS) from the drop-down listbox.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_ddl

DDL T4 Template Macro

44

Figure 4.39. DDL T4 Template Macro - Model Properties

Right-clicking the model design area displays a context-sensitive menu. Selecting Generate Database
from Model from the menu displays the Generate Database Wizard. The wizard can then be used to
generate MySQL DDL code.

DDL T4 Template Macro

45

Figure 4.40. DDL T4 Template Macro - Generate Database Wizard

46

47

Chapter 5. Connector/Net Tutorials

Table of Contents
5.1. Tutorial: An Introduction to Connector/Net Programming .. 47

5.1.1. The MySqlConnection Object ... 47
5.1.2. The MySqlCommand Object .. 48
5.1.3. Working with Decoupled Data .. 50
5.1.4. Working with Parameters ... 53
5.1.5. Working with Stored Procedures .. 54

5.2. Tutorial: MySQL Connector/Net ASP.NET Membership and Role Provider 56
5.3. Tutorial: MySQL Connector/Net ASP.NET Session State Provider .. 60
5.4. Tutorial: MySQL Connector/Net ASP.NET Profile Provider ... 62
5.5. Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source 64
5.6. Tutorial: Databinding in ASP.NET using LINQ on Entities ... 76
5.7. Tutorial: Using SSL with MySQL Connector/Net ... 80
5.8. Tutorial: Using MySqlScript ... 82

5.8.1. Using Delimiters with MySqlScript .. 84
5.9. Tutorial: Generating MySQL DDL from an Entity Framework Model ... 86

The following tutorials illustrate how to develop MySQL programs using technologies such as Visual
Studio, C#, ASP.NET, and the .NET and Mono frameworks. Work through the first tutorial to verify that
you have the right software components installed and configured, then choose other tutorials to try
depending on the features you intend to use in your applications.

5.1. Tutorial: An Introduction to Connector/Net Programming
This section provides a gentle introduction to programming with Connector/Net. The example code is
written in C#, and is designed to work on both Microsoft .NET Framework and Mono.

This tutorial is designed to get you up and running with Connector/Net as quickly as possible, it does
not go into detail on any particular topic. However, the following sections of this manual describe each
of the topics introduced in this tutorial in more detail. In this tutorial you are encouraged to type in and
run the code, modifying it as required for your setup.

This tutorial assumes you have MySQL and Connector/Net already installed. It also assumes
that you have installed the World example database, which can be downloaded from the MySQL
Documentation page. You can also find details on how to install the database on the same page.

Note

Before compiling the example code, make sure that you have added
References to your project as required. The References required are System,
System.Data and MySql.Data.

5.1.1. The MySqlConnection Object

For your Connector/Net application to connect to a MySQL database, it must establish a connection by
using a MySqlConnection object.

The MySqlConnection constructor takes a connection string as one of its parameters. The
connection string provides necessary information to make the connection to the MySQL database.
The connection string is discussed more fully in Section 6.1, “Connecting to MySQL Using Connector/
Net”. For a list of supported connection string options, see Chapter 7, Connector/Net Connection String
Options Reference.

The following code shows how to create a connection object:

http://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/doc/index-other.html

The MySqlCommand Object

48

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial1
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 // Perform database operations
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 conn.Close();
 Console.WriteLine("Done.");
 }
}

When the MySqlConnection constructor is invoked, it returns a connection object, which is used for
subsequent database operations. Open the connection before any other operations take place. Before
the application exits, close the connection to the database by calling Close on the connection object.

Sometimes an attempt to perform an Open on a connection object can fail, generating an exception
that can be handled using standard exception handling code.

In this section you have learned how to create a connection to a MySQL database, and open and close
the corresponding connection object.

5.1.2. The MySqlCommand Object

Once a connection has been established with the MySQL database, the next step is do carry out the
desired database operations. This can be achieved through the use of the MySqlCommand object.

You will see how to create a MySqlCommand object. Once it has been created, there are three main
methods of interest that you can call:

• ExecuteReader - used to query the database. Results are usually returned in a MySqlDataReader
object, created by ExecuteReader.

• ExecuteNonQuery - used to insert and delete data.

• ExecuteScalar - used to return a single value.

Once a MySqlCommand object has been created, you will call one of the above methods on it to
carry out a database operation, such as perform a query. The results are usually returned into a
MySqlDataReader object, and then processed, for example the results might be displayed. The
following code demonstrates how this could be done.

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial2
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";

The MySqlCommand Object

49

 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent='Oceania'";
 MySqlCommand cmd = new MySqlCommand(sql, conn);
 MySqlDataReader rdr = cmd.ExecuteReader();

 while (rdr.Read())
 {
 Console.WriteLine(rdr[0]+" -- "+rdr[1]);
 }
 rdr.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }
}

When a connection has been created and opened, the code then creates a MySqlCommand
object. Note that the SQL query to be executed is passed to the MySqlCommand constructor. The
ExecuteReader method is then used to generate a MySqlReader object. The MySqlReader object
contains the results generated by the SQL executed on the command object. Once the results have
been obtained in a MySqlReader object, the results can be processed. In this case, the information
is printed out by a while loop. Finally, the MySqlReader object is disposed of by running its Close
method on it.

In the next example, you will see how to use the ExecuteNonQuery method.

The procedure for performing an ExecuteNonQuery method call is simpler, as there is no need
to create an object to store results. This is because ExecuteNonQuery is only used for inserting,
updating and deleting data. The following example illustrates a simple update to the Country table:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial3
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "INSERT INTO Country (Name, HeadOfState, Continent) VALUES ('Disneyland','Mickey Mouse', 'North America')";
 MySqlCommand cmd = new MySqlCommand(sql, conn);
 cmd.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }
}

Working with Decoupled Data

50

The query is constructed, the command object created and the ExecuteNonQuery method called on
the command object. You can access your MySQL database with the mysql command interpreter and
verify that the update was carried out correctly.

Finally, you will see how the ExecuteScalar method can be used to return a single value. Again, this
is straightforward, as a MySqlDataReader object is not required to store results, a simple variable will
do. The following code illustrates how to use ExecuteScalar:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial4
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "SELECT COUNT(*) FROM Country";
 MySqlCommand cmd = new MySqlCommand(sql, conn);
 object result = cmd.ExecuteScalar();
 if (result != null)
 {
 int r = Convert.ToInt32(result);
 Console.WriteLine("Number of countries in the World database is: " + r);
 }

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }
}

This example uses a simple query to count the rows in the Country table. The result is obtained by
calling ExecuteScalar on the command object.

5.1.3. Working with Decoupled Data

Previously, when using MySqlDataReader, the connection to the database was continually
maintained, unless explicitly closed. It is also possible to work in a manner where a connection is only
established when needed. For example, in this mode, a connection could be established to read a
chunk of data, the data could then be modified by the application as required. A connection could then
be reestablished only if and when the application writes data back to the database. This decouples the
working data set from the database.

This decoupled mode of working with data is supported by Connector/Net. There are several parts
involved in allowing this method to work:

• Data Set - The Data Set is the area in which data is loaded to read or modify it. A DataSet object is
instantiated, which can store multiple tables of data.

• Data Adapter - The Data Adapter is the interface between the Data Set and the database itself.
The Data Adapter is responsible for efficiently managing connections to the database, opening
and closing them as required. The Data Adapter is created by instantiating an object of the

Working with Decoupled Data

51

MySqlDataAdapter class. The MySqlDataAdapter object has two main methods: Fill which
reads data into the Data Set, and Update, which writes data from the Data Set to the database.

• Command Builder - The Command Builder is a support object. The Command Builder works in
conjunction with the Data Adapter. When a MySqlDataAdapter object is created, it is typically
given an initial SELECT statement. From this SELECT statement the Command Builder can work
out the corresponding INSERT, UPDATE and DELETE statements that would be required to update
the database. To create the Command Builder, an object of the class MySqlCommandBuilder is
created.

Each of these classes will now be discussed in more detail.

Instantiating a DataSet object

A DataSet object can be created simply, as shown in the following example code snippet:

DataSet dsCountry;
...
dsCountry = new DataSet();

Although this creates the DataSet object, it has not yet filled it with data. For that, a Data Adapter is
required.

Instantiating a MySqlDataAdapter object

The MySqlDataAdapter can be created as illustrated by the following example:

MySqlDataAdapter daCountry;
...
string sql = "SELECT Code, Name, HeadOfState FROM Country WHERE Continent='North America'";
daCountry = new MySqlDataAdapter (sql, conn);

Note, the MySqlDataAdapter is given the SQL specifying the data to work with.

Instantiating a MySqlCommandBuilder object

Once the MySqlDataAdapter has been created, it is necessary to generate the additional statements
required for inserting, updating and deleting data. There are several ways to do this, but in this tutorial
you will see how this can most easily be done with MySqlCommandBuilder. The following code
snippet illustrates how this is done:

MySqlCommandBuilder cb = new MySqlCommandBuilder(daCountry);

Note that the MySqlDataAdapter object is passed as a parameter to the command builder.

Filling the Data Set

To do anything useful with the data from your database, you need to load it into a Data Set. This is one
of the jobs of the MySqlDataAdapter object, and is carried out with its Fill method. The following
example code illustrates this:

DataSet dsCountry;
...
dsCountry = new DataSet();
...
daCountry.Fill(dsCountry, "Country");

Note the Fill method is a MySqlDataAdapter method, the Data Adapter knows how to establish a
connec tion with the database and retrieve the required data, and then populates the Data Set when
the Fill method is called. The second parameter “Country” is the table in the Data Set to update.

Updating the Data Set

The data in the Data Set can now be manipulated by the application as required. At some
point, changes to data will need to be written back to the database. This is achieved through a
MySqlDataAdapter method, the Update method.

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html

Working with Decoupled Data

52

daCountry.Update(dsCountry, "Country");

Again, the Data Set and the table within the Data Set to update are specified.

Working Example

The interactions between the DataSet, MySqlDataAdapter and MySqlCommandBuilder classes
can be a little confusing, so their operation can perhaps be best illustrated by working code.

In this example, data from the World database is read into a Data Grid View control. Here, the data
can be viewed and changed before clicking an update button. The update button then activates code
to write changes back to the database. The code uses the principles explained above. The application
was built using the Microsoft Visual Studio to place and create the user interface controls, but the main
code that uses the key classes described above is shown below, and is portable.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using MySql.Data;
using MySql.Data.MySqlClient;

namespace WindowsFormsApplication5
{
 public partial class Form1 : Form
 {
 MySqlDataAdapter daCountry;
 DataSet dsCountry;

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {

 string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 label2.Text = "Connecting to MySQL...";

 string sql = "SELECT Code, Name, HeadOfState FROM Country WHERE Continent='North America'";
 daCountry = new MySqlDataAdapter (sql, conn);
 MySqlCommandBuilder cb = new MySqlCommandBuilder(daCountry);

 dsCountry = new DataSet();
 daCountry.Fill(dsCountry, "Country");
 dataGridView1.DataSource = dsCountry;
 dataGridView1.DataMember = "Country";
 }
 catch (Exception ex)
 {
 label2.Text = ex.ToString();
 }
 }

 private void button1_Click(object sender, EventArgs e)
 {
 daCountry.Update(dsCountry, "Country");
 label2.Text = "MySQL Database Updated!";
 }

 }

Working with Parameters

53

}

The application running is shown below:

Figure 5.1. World Database Application

5.1.4. Working with Parameters

This part of the tutorial shows you how to use parameters in your Connector/Net application.

Although it is possible to build SQL query strings directly from user input, this is not advisable as it does
not prevent erroneous or malicious information being entered. It is safer to use parameters as they will
be processed as field data only. For example, imagine the following query was constructed from user
input:

string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent = "+user_continent;

If the string user_continent came from a Text Box control, there would potentially be no control
over the string entered by the user. The user could enter a string that generates a run time error, or in
the worst case actually harms the system. When using parameters it is not possible to do this because
a parameter is only ever treated as a field parameter, rather than an arbitrary piece of SQL code.

The same query written user a parameter for user input would be:

string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent = @Continent";

Note that the parameter is preceded by an '@' symbol to indicate it is to be treated as a parameter.

As well as marking the position of the parameter in the query string, it is necessary to add a parameter
to the Command object. This is illustrated by the following code snippet:

cmd.Parameters.AddWithValue("@Continent", "North America");

In this example the string "North America" is supplied as the parameter value statically, but in a more
practical example it would come from a user input control.

Working with Stored Procedures

54

A further example illustrates the complete process:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial5
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent=@Continent";
 MySqlCommand cmd = new MySqlCommand(sql, conn);

 Console.WriteLine("Enter a continent e.g. 'North America', 'Europe': ");
 string user_input = Console.ReadLine();

 cmd.Parameters.AddWithValue("@Continent", user_input);

 MySqlDataReader rdr = cmd.ExecuteReader();

 while (rdr.Read())
 {
 Console.WriteLine(rdr["Name"]+" --- "+rdr["HeadOfState"]);
 }
 rdr.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }
}

In this part of the tutorial you have see how to use parameters to make your code more secure.

5.1.5. Working with Stored Procedures

This section illustrates how to work with stored procedures. Putting database-intensive operations into
stored procedures lets you define an API for your database application. You can reuse this API across
multiple applications and multiple programming languages. This technique avoids duplicating database
code, saving time and effort when you make updates due to schema changes, tune the performance
of queries, or add new database operations for logging, security, and so on. Before working through
this tutorial, familiarize yourself with the CREATE PROCEDURE and CREATE FUNCTION statements that
create different kinds of stored routines.

For the purposes of this tutorial, you will create a simple stored procedure to see how it can be called
from Connector/Net. In the MySQL Client program, connect to the World database and enter the
following stored procedure:

DELIMITER //
CREATE PROCEDURE country_hos
(IN con CHAR(20))
BEGIN
 SELECT Name, HeadOfState FROM Country
 WHERE Continent = con;
END //
DELIMITER ;

http://dev.mysql.com/doc/refman/5.5/en/create-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/create-function.html

Working with Stored Procedures

55

Test that the stored procedure works as expected by typing the following into the mysql command
interpreter:

CALL country_hos('Europe');

Note that The stored routine takes a single parameter, which is the continent to restrict your search to.

Having confirmed that the stored procedure is present and correct, you can see how to access it from
Connector/Net.

Calling a stored procedure from your Connector/Net application is similar to techniques you have seen
earlier in this tutorial. A MySqlCommand object is created, but rather than taking an SQL query as a
parameter, it takes the name of the stored procedure to call. Set the MySqlCommand object to the type
of stored procedure, as shown by the following code snippet:

string rtn = "country_hos";
MySqlCommand cmd = new MySqlCommand(rtn, conn);
cmd.CommandType = CommandType.StoredProcedure;

In this case, the stored procedure requires you to pass a parameter. This can be achieved using the
techniques seen in the previous section on parameters, Section 5.1.4, “Working with Parameters”, as
shown in the following code snippet:

cmd.Parameters.AddWithValue("@con", "Europe");

The value of the parameter @con could more realistically have come from a user input control, but for
simplicity it is set as a static string in this example.

At this point, everything is set up and you can call the routine using techniques also learned in earlier
sections. In this case, the ExecuteReader method of the MySqlCommand object is used.

Complete working code for the stored procedure example is shown below:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial6
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string rtn = "country_hos";
 MySqlCommand cmd = new MySqlCommand(rtn, conn);
 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.AddWithValue("@con", "Europe");

 MySqlDataReader rdr = cmd.ExecuteReader();
 while (rdr.Read())
 {
 Console.WriteLine(rdr[0] + " --- " + rdr[1]);
 }
 rdr.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();

Tutorial: MySQL Connector/Net ASP.NET Membership and Role Provider

56

 Console.WriteLine("Done.");
 }
}

In this section, you have seen how to call a stored procedure from Connector/Net. For the moment, this
concludes our introductory tutorial on programming with Connector/Net.

5.2. Tutorial: MySQL Connector/Net ASP.NET Membership and
Role Provider

Many web sites feature the facility for the user to create a user account. They can then log into the
web site and enjoy a personalized experience. This requires that the developer creates database
tables to store user information, along with code to gather and process this data. This represents a
burden on the developer, and there is the possibility for security issues to creep into the developed
code. However, ASP.NET 2.0 introduced the Membership system. This system is designed around
the concept of Membership, Profile and Role Providers, which together provide all of the functionality
to implement a user system, that previously would have to have been created by the developer from
scratch.

Currently, MySQL Connector/Net provides Membership, Role, Profile and Session State Providers.

This tutorial shows you how to set up your ASP.NET web application to use the MySQL Connector/Net
Membership and Role Providers. It assumes that you have MySQL Server installed, along with MySQL
Connector/Net and Microsoft Visual Studio. This tutorial was tested with MySQL Connector/Net 6.0.4
and Microsoft Visual Studio 2008 Professional Edition. It is recommended you use 6.0.4 or above for
this tutorial.

1. Create a new database in the MySQL Server using the MySQL Command Line Client program
(mysql), or other suitable tool. It does not matter what name is used for the database, but record it.
You specify it in the connection string constructed later in this tutorial. This database contains the
tables, automatically created for you later, used to store data about users and roles.

2. Create a new ASP.NET Web Site in Visual Studio. If you are not sure how to do this, refer to
Section 5.6, “Tutorial: Databinding in ASP.NET using LINQ on Entities”, which demonstrates how to
create a simple ASP.NET web site.

3. Add References to MySql.Data and MySql.Web to the web site project.

4. Locate the machine.config file on your system, which is the configuration file for the .NET
Framework.

5. Search the machine.config file to find the membership provider MySQLMembershipProvider.

6. Add the attribute autogenerateschema="true". The appropriate section should now resemble
the following (note: for the sake of brevity some information has been excluded):

<membership>
 <providers>
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 ...
 connectionStringName="LocalSqlServer"
 ... />
 <add name="MySQLMembershipProvider"
 autogenerateschema="true"
 type="MySql.Web.Security.MySQLMembershipProvider, MySql.Web, Version=6.0.4.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d"
 connectionStringName="LocalMySqlServer"
 ... />
 </providers>
</membership>

Note that the name for the connection string to be used to connect to the server that contains the
membership database is LocalMySqlServer.

Tutorial: MySQL Connector/Net ASP.NET Membership and Role Provider

57

The autogenerateschema="true" attribute will cause MySQL Connector/Net to silently
create, or upgrade, the schema on the database server, to contain the required tables for storing
membership information.

7. It is now necessary to create the connection string referenced in the previous step. Load the web
site's web.config file into Visual Studio.

8. Locate the section marked <connectionStrings>. Add the following connection string
information:

<connectionStrings>
 <remove name="LocalMySqlServer"/>
 <add name="LocalMySqlServer"
 connectionString="Datasource=localhost;Database=users;uid=root;pwd=password;"
 providerName="MySql.Data.MySqlClient"/>
</connectionStrings>

The database specified is the one created in the first step. You could alternatively have used an
existing database.

9. At this point build the solution to ensure no errors are present. This can be done by selecting Build,
Build Solution from the main menu, or pressing F6.

10. ASP.NET supports the concept of locally and remotely authenticated users. With local
authentication the user is validated using their Windows credentials when they attempt to access
the web site. This can be useful in an Intranet environment. With remote authentication, a user is
prompted for their login details when accessing the web site, and these credentials are checked
against the membership information stored in a database server such as MySQL Server. You will
now see how to choose this form of authentication.

Start the ASP.NET Web Site Administration Tool. This can be done quickly by clicking the small
hammer/Earth icon in the Solution Explorer. You can also launch this tool by selecting Website,
ASP.NET Configuration from the main menu.

11. In the ASP.NET Web Site Administration Tool click the Security tab.

12. Now click the User Authentication Type link.

13. Select the From the internet radio button. The web site will now need to provide a form to allow
the user to enter their login details. These will be checked against membership information stored in
the MySQL database.

Figure 5.2. Authentication Type

14. You now need to specify the Role and Membership Provider to be used. Click the Provider tab.

Tutorial: MySQL Connector/Net ASP.NET Membership and Role Provider

58

15. Click the Select a different provider for each feature (advanced) link.

16. Now select the MySQLMembershipProvider and the MySQLRoleProvider radio buttons.

Figure 5.3. Select Membership and Role Provider

17. In Visual Studio, rebuild the solution by selecting Build, Rebuild Solution from the main menu.

18. Check that the necessary schema has been created. This can be achieved using the mysql
command interpreter.

Figure 5.4. Membership and Role Provider Tables

19. Assuming all is present and correct, you can now create users and roles for your web application.
The easiest way to do this is with the ASP.NET Web Site Administration Tool. However, many web
applications contain their own modules for creating roles and users. For simplicity, the ASP.NET
Web Site Administration Tool will be used in this tutorial.

20. In the ASP.NET Web Site Administration Tool, click the Security tab. Now that both the
Membership and Role Provider are enabled, you will see links for creating roles and users. Click the
Create or Manage Roles link.

Tutorial: MySQL Connector/Net ASP.NET Membership and Role Provider

59

Figure 5.5. Security Tab

21. You can now enter the name of a new Role and click Add Role to create the new Role. Create new
Roles as required.

22. Click the Back button.

23. Click the Create User link. You can now fill in information about the user to be created, and also
allocate that user to one or more Roles.

Figure 5.6. Create User

Tutorial: MySQL Connector/Net ASP.NET Session State Provider

60

24. Using the mysql command interpreter, you can check that your database has been correctly
populated with the Membership and Role data.

Figure 5.7. Membership and Roles Table Contents

In this tutorial, you have seen how to set up the MySQL Connector/Net Membership and Role
Providers for use in your ASP.NET web application.

5.3. Tutorial: MySQL Connector/Net ASP.NET Session State
Provider

MySQL Connector/Net from version 6.1 has included a MySQL Session State Provider. This provider
enables you to store session state in a MySQL database. The following tutorial shows you how to
prepare to use the MySQL Session State Provider, and then store session data into the MySQL
database. This tutorial uses Microsoft Visual Studio 2008 Professional Edition, MySQL Connector/
Net 6.1.1 and MySQL Server 5.1. This tutorial also assumes you have created an empty database,
for example test, where you will store session data. You could do this using the mysql command
interpreter.

1. In Visual Studio, create a new ASP.NET web site. If you are not sure how to do this, refer to the
tutorial Section 5.6, “Tutorial: Databinding in ASP.NET using LINQ on Entities”, which demonstrates
how to do this.

2. Launch the MySQL MySQL Website Configuration tool. Due to a bug in 6.1.1, this may not appear
unless you are connected to a server in the Server Explorer. If you are unfamiliar with the MySQL
Website Configuration tool, consider first working through the tutorial in Section 4.12, “MySQL
Website Configuration Tool”.

3. Navigate through the wizard to the Session State page. Make sure the check box Use MySQL to
manage my ASP.NET session data is selected.

4. On the same page, configure the connection string to the database that will contain your session
data. If this database is empty, MySQL Connector/Net will create the schema required to store
session data.

5. Ensure that the check box Autogenerate Schema is selected so that MySQL Connector/Net will
create the schema in your database to store the session data correctly.

6. Enter the name of your application.

Tutorial: MySQL Connector/Net ASP.NET Session State Provider

61

7. Click Finish. The MySQL Website Configuration tool will now update your application's
web.config file with information about the connection string and default providers to be used. In
this case, we have selected the MySQL Session State Provider.

At this point, you are ready to use the MySQL database to store session data. To test that the set up
has worked, you can write a simple program that uses session variables.

1. Open Default.aspx.cs. In the Page_Load method, add the following code:

Session["SessionVariable1"] = "Test string";

2. Build your solution.

3. Run the solution (without debugging). When the application runs, the provider will autogenerate
tables required in the database you chose when setting up the application.

4. Check that the schema was in fact created. Using the MySQL Command Line Client use the target
database and then type SHOW TABLES;. You will see that MySQL Connector/Net has created the
required schema automatically, as we selected this to happen in the MySQL Website Configuration
tool.

5. Now view the contents of these tables by typing SELECT * FROM my_aspnet_sessions; in the
mysql command interpreter. This will display the session data our application used. Note that this
is stored in binary format so some data may not display as expected.

At this point, you have installed the Session State Provider and carried out a preliminary test of the
installation. You will now work a bit more with the Session State Provider.

In this part of the tutorial, you will set and retrieve a session variable. You can work with your existing
project.

1. Select the Default.aspx and switch to Design View. Add a text box and three buttons. Change
the text property for the buttons to “Store Session Variable”, “Clear Textbox”, and “Show Session
Variable”. These will be Button1, Button2 and Button3 respectively. Build your solution to
ensure that no errors have been introduced.

2. Still in the Design View, double-click Button1. Now to the Button1_Click event handler add
code some the handler resembles the following:

protected void Button1_Click(object sender, EventArgs e)
{
 Session["SessionString"] = TextBox1.Text;
}

You have created a new Session variable accessed using the key “SessionString”. This will be set
to the text that was entered into the text box when Button1 is clicked.

3. In Design View, double-click Button2 to add its click event handler. This button needs to clear text
from the text box. The code to do this is as follows:

protected void Button2_Click(object sender, EventArgs e)
{
 TextBox1.Text = "";
}

The code simply assigns an empty string to the Text property of the text box.

4. In the Design View double-click Button3 and modify the click handler as follows:

protected void Button3_Click(object sender, EventArgs e)
{
 TextBox1.Text = (String)Session["SessionString"];
}

This will retrieve the session string and display it in the text box.

Tutorial: MySQL Connector/Net ASP.NET Profile Provider

62

5. Now modify the Page_Load method as follows:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 TextBox1.Text = "Enter some text";
 }
}

This ensures that when the page loads the text box Text property is reset.

6. Ensure that the solution is saved and then rebuild the solution.

7. Run the solution without debugging.

8. The form will be displayed. Enter some text into the text box. Now click Store Session Variable. At
this point you have stored the string in a session variable.

9. Now click Clear Text to clear the text box.

10. Now click Show Session Variable to retrieve and display the session variable.

11. Refresh the page to destroy the form and display a new form.

12. Click Show Session Variable the text box will display the stored session variable, demonstrating
that the refreshing the page does not destroy the session variable.

This illustrates that the session state data is not destroyed when a page is reloaded.

5.4. Tutorial: MySQL Connector/Net ASP.NET Profile Provider

This tutorial shows you how to use the MySQL Profile Provider to store user profile information in a
MySQL database. The tutorial uses MySQL Connector/Net 6.1.1, MySQL Server 5.1 and Microsoft
Visual Studio 2008 Professional Edition.

Many modern web sites allow the user to create a personal profile. This requires a significant amount
of code, but ASP.NET reduces this considerable by including the functionality in its Profile classes. The
Profile Provider provides an abstraction between these classes and a data source. The MySQL Profile
Provider enables profile data to be stored in a MySQL database. This enables the profile properties
to be written to a persistent store, and be retrieved when required. The Profile Provider also enables
profile data to be managed effectively, for example it enables profiles that have not been accessed
since a specific date to be deleted.

The following steps show you how you can select the MySQL Profile Provider.

1. Create a new ASP.NET web project.

2. Select the MySQL Website Configuration tool. Due to a bug in 6.1.1 you may have to first connect
to a server in Server Explorer before the tool's icon will display in the toolbar of the Solution
Explorer.

3. In the MySQL Website Configuration tool navigate through the tool to the Profiles page.

4. Select the Use MySQL to manage my profiles check box.

5. Select the Autogenerate Schema check box.

6. Click the Edit... button and configure a connection string for the database that will be used to store
user profile information.

7. Navigate to the last page of the tool and click Finish to save your changes and exit the tool.

Tutorial: MySQL Connector/Net ASP.NET Profile Provider

63

At this point you are now ready to start using the MySQL Profile Provider. With the following steps you
can carry out a preliminary test of your installation.

1. Open your web.config file.

2. Add a simple profile such as the following:

<system.web>
 <anonymousIdentification enabled="true"/>
 <profile defaultProvider="MySQLProfileProvider">
 ...
 <properties>
 <add name="Name" allowAnonymous="true"/>
 <add name="Age" allowAnonymous="true" type="System.UInt16"/>
 <group name="UI">
 <add name="Color" allowAnonymous="true" defaultValue="Blue"/>
 <add name="Style" allowAnonymous="true" defaultValue="Plain"/>
 </group>
 </properties>
 </profile>
 ...

Note that anonymousIdentification has been set to true. This enables users who have not
been authenticated to use profiles. They are identified by a GUID in a cookie rather than by user
name.

Now that the simple profile has been defined in web.config, the next step is to write some code to
test the profile.

1. In Design View design a simple page with the following controls:

Figure 5.8. Simple Profile Application

These will allow the user to enter some profile information. The user can also use the buttons to
save their profile, clear the page, and restore their profile data.

2. In the Code View add code as follows:

...
protected void Page_Load(object sender, EventArgs e)

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

64

{
 if (!IsPostBack)
 {
 TextBox1.Text = Profile.Name;
 TextBox2.Text = Profile.Age.ToString();
 Label1.Text = Profile.UI.Color;
 }
}

// Store Profile
protected void Button1_Click(object sender, EventArgs e)
{
 Profile.Name = TextBox1.Text;
 Profile.Age = UInt16.Parse(TextBox2.Text);
}

// Clear Form
protected void Button2_Click(object sender, EventArgs e)
{
 TextBox1.Text = "";
 TextBox2.Text = "";
 Label1.Text = "";
}
// Retrieve Profile
protected void Button3_Click(object sender, EventArgs e)
{
 TextBox1.Text = Profile.Name;
 TextBox2.Text = Profile.Age.ToString();
 Label1.Text = Profile.UI.Color;
}
protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{
 Profile.UI.Color = DropDownList1.SelectedValue;
}
...

3. Save all files and build the solution to check that no errors have been introduced.

4. Run the application.

5. Enter your name, age and select a color from the listbox. Now store this information in your profile
by clicking Store Profile. Note that if you do not select a color from the listbox your profile will use
the default color Blue that was specified in the web.config file.

6. Click Clear Form to clear text from the textboxes and the label that displays your chosen color.

7. Now click Retrieve Profile to restore your profile data from the MySQL database.

8. Now exit the browser to terminate the application.

9. Run the application again. Note that when the page loads your profile information is restored from
the MySQL database.

In this tutorial you have seen how to using the MySQL Profile Provider with MySQL Connector/Net.

5.5. Tutorial: Using an Entity Framework Entity as a Windows
Forms Data Source

In this tutorial you will learn how to create a Windows Forms Data Source from an Entity in an Entity
Data Model. This tutorial assumes that you have installed the World example database, which can
be downloaded from the MySQL Documentation page. You can also find details on how to install the
database on the same page. It will also be convenient for you to create a connection to the World
database after it is installed. For instructions on how to do this see Section 4.1, “Making a Connection”.

Creating a new Windows Forms application

The first step is to create a new Windows Forms application.

http://dev.mysql.com/doc/index-other.html

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

65

1. In Visual Studio, select File, New, Project from the main menu.

2. Choose the Windows Forms Application installed template. Click OK. The solution is created.

Adding an Entity Data Model

You will now add an Entity Data Model to your solution.

1. In the Solution Explorer, right-click your application and select Add, New Item.... From Visual
Studio installed templates select ADO.NET Entity Data Model. Click Add.

Figure 5.9. Add Entity Data Model

2. You will now see the Entity Data Model Wizard. You will use the wizard to generate the Entity Data
Model from the world example database. Select the icon Generate from database. Click Next.

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

66

Figure 5.10. Entity Data Model Wizard Screen 1

3. You can now select the connection you made earlier to the World database. If you have not already
done so, you can create the new connection at this time by clicking New Connection.... For further
instructions on creating a connection to a database see Section 4.1, “Making a Connection”.

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

67

Figure 5.11. Entity Data Model Wizard Screen 2

4. Make a note of the entity connection settings to be used in App.Config, as these will be used later
to write the necessary control code.

5. Click Next.

6. The Entity Data Model Wizard connects to the database. You are then presented with a tree
structure of the database. From this you can select the object you would like to include in your
model. If you had created Views and Stored Routines these will be displayed along with any tables.
In this example you just need to select the tables. Click Finish to create the model and exit the
wizard.

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

68

Figure 5.12. Entity Data Model Wizard Screen 3

7. Visual Studio will generate the model and then display it.

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

69

Figure 5.13. Entity Data Model Diagram

8. From the Visual Studio main menu select Build, Build Solution, to ensure that everything compiles
correctly so far.

Adding a new Data Source

You will now add a new Data Source to your project and see how it can be used to read and write to
the database.

1. From the Visual Studio main menu select Data, Add New Data Source.... You will be presented with
the Data Source Configuration Wizard.

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

70

Figure 5.14. Entity Data Source Configuration Wizard Screen 1

2. Select the Object icon. Click Next.

3. You will now select the Object to bind to. Expand the tree. In this tutorial, you will select the city
table. Once the city table has been selected click Next.

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

71

Figure 5.15. Entity Data Source Configuration Wizard Screen 2

4. The wizard will confirm that the city object is to be added. Click Finish.

Figure 5.16. Entity Data Source Configuration Wizard Screen 3

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

72

5. The city object will be display in the Data Sources panel. If the Data Sources panel is not displayed,
select Data, Show Data Sources from the Visual Studio main menu. The docked panel will then be
displayed.

Figure 5.17. Data Sources

Using the Data Source in a Windows Form

You will now learn how to use the Data Source in a Windows Form.

1. In the Data Sources panel select the Data Source you just created and drag and drop it onto the
Form Designer. By default the Data Source object will be added as a Data Grid View control. Note
that the Data Grid View control is bound to the cityBindingSource and the Navigator control is
bound to cityBindingNavigator.

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

73

Figure 5.18. Data Form Designer

2. Save and rebuild the solution before continuing.

Adding Code to Populate the Data Grid View

You are now ready to add code to ensure that the Data Grid View control will be populated with data
from the City database table.

1. Double-click the form to access its code.

2. Add code to instantiate the Entity Data Model's EntityContainer object and retrieve data from the
database to populate the control.

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

74

Figure 5.19. Adding Code to the Form

3. Save and rebuild the solution.

4. Run the solution. Ensure the grid is populated and you can navigate the database.

Figure 5.20. The Populated Grid Control

Adding Code to Save Changes to the Database

You will now add code to enable you to save changes to the database.

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

75

The Binding source component ensures that changes made in the Data Grid View control are also
made to the Entity classes bound to it. However, that data needs to be saved back from the entities to
the database itself. This can be achieved by the enabling of the Save button in the Navigator control,
and the addition of some code.

1. In the Form Designer, click the Save icon in the Form toolbar and ensure that its Enabled property
is set to True.

Figure 5.21. Save Button Enabled

2. Double-click the Save icon in the Form toolbar to display its code.

3. You now need to add code to ensure that data is saved to the database when the save button is
clicked in the application.

Tutorial: Databinding in ASP.NET using LINQ on Entities

76

Figure 5.22. Adding Save Code to the Form

4. Once the code has been added, save the solution and rebuild it. Run the application and verify that
changes made in the grid are saved.

5.6. Tutorial: Databinding in ASP.NET using LINQ on Entities

In this tutorial you create an ASP.NET web page that binds LINQ queries to entities using the Entity
Framework mapping.

If you have not already done so, install the World example database prior to attempting this tutorial.
See the tutorial Section 5.5, “Tutorial: Using an Entity Framework Entity as a Windows Forms Data
Source” for instructions on downloading and installing this database.

Creating an ASP.NET web site

In this part of the tutorial, you create an ASP.NET web site. The web site uses the World database.
The main web page features a drop down list from which you can select a country. Data about that
country's cities is then displayed in a grid view control.

1. From the Visual Studio main menu select File, New, Web Site....

2. From the Visual Studio installed templates select ASP.NET Web Site. Click OK. You will be
presented with the Source view of your web page by default.

3. Click the Design view tab situated underneath the Source view panel.

Tutorial: Databinding in ASP.NET using LINQ on Entities

77

Figure 5.23. The Design Tab

4. In the Design view panel, enter some text to decorate the blank web page.

5. Click Toolbox. From the list of controls select DropDownList. Drag and drop the control to a
location beneath the text on your web page.

Figure 5.24. Drop Down List

6. From the DropDownList control's context menu, ensure that the Enable AutoPostBack check
box is enabled. This will ensure the control's event handler is called when an item is selected. The
user's choice will in turn be used to populate the GridView control.

Figure 5.25. Enable AutoPostBack

7. From the Toolbox select the GridView control.

Tutorial: Databinding in ASP.NET using LINQ on Entities

78

Figure 5.26. Grid View Control

Drag and drop the Grid Vew control to a location just below the Drop Down List you already placed.

Figure 5.27. Placed Grid Vew Control

8. At this point it is recommended that you save your solution, and build the solution to ensure that
there are no errors.

9. If you run the solution you will see that the text and drop down list are displayed, but the list is
empty. Also, the grid view does not appear at all. Adding this functionality is described in the
following sections.

At this stage you have a web site that will build, but further functionality is required. The next step will
be to use the Entity Framework to create a mapping from the World database into entities that you can
control programmatically.

Creating an ADO.NET Entity Data Model

In this stage of the tutorial you will add an ADO.NET Entity Data Model to your project, using the World
database at the storage level. The procedure for doing this is described in the tutorial Section 5.5,
“Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source”, and so will not be
repeated here.

Tutorial: Databinding in ASP.NET using LINQ on Entities

79

Populating a Drop Data List Box with using the results of a entity LINQ query

In this part of the tutorial you will write code to populate the DropDownList control. When the web page
loads the data to populate the list will be achieved by using the results of a LINQ query on the model
created previously.

1. In the Design view panel, double-click any blank area. This brings up the Page_Load method.

2. Modify the relevant section of code according to the following listing:

...
public partial class _Default : System.Web.UI.Page
{
 worldModel.worldEntities we;
 protected void Page_Load(object sender, EventArgs e)
 {
 we = new worldModel.worldEntities();
 if (!IsPostBack)
 {
 var countryQuery = from c in we.country
 orderby c.Name
 select new { c.Code, c.Name };
 DropDownList1.DataValueField = "Code";
 DropDownList1.DataTextField = "Name";
 DropDownList1.DataSource = countryQuery;
 DataBind();
 }
 }
...

Note that the list control only needs to be populated when the page first loads. The conditional code
ensures that if the page is subsequently reloaded, the list control is not repopulated, which would
cause the user selection to be lost.

3. Save the solution, build it and run it. You should see the list control has been populated. You can
select an item, but as yet the grid view control does not appear.

At this point you have a working Drop Down List control, populated by a LINQ query on your entity data
model.

Populating a Grid View control using an entity LINQ query

In the last part of this tutorial you will populate the Grid View Control using a LINQ query on your entity
data model.

1. In the Design view, double-click the DropDownList control. This causes its
SelectedIndexChanged code to be displayed. This method is called when a user selects an item
in the list control and thus fires an AutoPostBack event.

2. Modify the relevant section of code accordingly to the following listing:

...
 protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
 {
 var cityQuery = from c in we.city
 where c.CountryCode == DropDownList1.SelectedValue
 orderby c.Name
 select new { c.Name, c.Population, c.CountryCode };
 GridView1.DataSource = cityQuery;
 DataBind();
 }
...

The grid view control is populated from the result of the LINQ query on the entity data model.

3. As a check compare your code to that shown in the following screenshot:

Tutorial: Using SSL with MySQL Connector/Net

80

Figure 5.28. Source Code

4. Save, build and run the solution. As you select a country you will see its cities are displayed in the
grid view control.

Figure 5.29. The Working Web Site

In this tutorial you have seen how to create an ASP.NET web site, you have also seen how you can
access a MySQL database using LINQ queries on an entity data model.

5.7. Tutorial: Using SSL with MySQL Connector/Net
In this tutorial you will learn how you can use MySQL Connector/Net to connect to a MySQL server
configured to use SSL. Support for SSL client certificates was added with MySQL Connector/Net 6.2.

Tutorial: Using SSL with MySQL Connector/Net

81

MySQL Server uses the PEM format for certificates and private keys. This tutorial will use the test
certificates from the server test suite by way of example. You can obtain the MySQL Server source
code from MySQL Downloads. The certificates can be found in the directory ./mysql-test/
std_data.

To carry out the steps in this tutorial, you must have Open SSL installed. This can be downloaded for
Microsoft Windows at no charge from Shining Light Productions.

Further details on the connection string options used in this tutorial can be found at Chapter 7,
Connector/Net Connection String Options Reference.

Configuring the MySQL Server to use SSL

1. In the MySQL Server configuration file, set the SSL parameters as follows:

ssl-ca=path/to/repo/mysql-test/std_data/cacert.pem
ssl-cert=path/to/repo/mysql-test/std_data/server-cert.pem
ssl-key=path/to/repo/mysql-test/std_data/server-key.pem

Adjust the directories according to the location in which you installed the MySQL source code.

2. In this step you create a test user and set the user to require SSL.

Using the MySQL Command Line Client, connect as root and create the user sslclient.

3. To set privileges and requirements, issue the following command:

GRANT ALL PRIVILEGES ON *.* TO sslclient@'%' REQUIRE SSL;

Creating a certificate file to use with the .NET client

1. The .NET client does not use the PEM file format, as .NET does not support this format natively.
You will be using test client certificates from the same server repository, for the purposes of
this example. Convert these to PFX format first. This format is also known as PKCS#12. An
article describing this procedure can be found at the Citrix website. From the directory server-
repository-root/mysql-test/std_data, issue the following command:

openssl pkcs12 -export -in client-cert.pem -inkey client-key.pem -certfile cacert.pem -out client.pfx

2. When asked for an export password, enter the password “pass”. The file client.pfx will be
generated. This file is used in the remainder of the tutorial.

Connecting to the server using a file-based certificate

1. You will use PFX file, client.pfx you created in the previous step to authenticate the client. The
following example demonstrates how to connect using the SSL Mode, CertificateFile and
CertificatePassword connection string options:

using (MySqlConnection connection = new MySqlConnection(
 "database=test;user=sslclient;" +
 "CertificateFile=H:\\bzr\\mysql-trunk\\mysql-test\\std_data\\client.pfx" +
 "CertificatePassword=pass;" +
 "SSL Mode=Required "))
{
 connection.Open();
}

The path to the certificate file will need to be changed to reflect your individual installation.

Connecting to the server using a store-based certificate

1. The first step is to import the PFX file, client.pfx, into the Personal Store. Double-click the file in
Windows explorer. This launches the Certificate Import Wizard.

2. Follow the steps dictated by the wizard, and when prompted for the password for the PFX file, enter
“pass”.

http://dev.mysql.com/downloads/mysql/5.1.html#source
http://www.slproweb.com/products/Win32OpenSSL.html
http://support.citrix.com/article/CTX106630

Tutorial: Using MySqlScript

82

3. Click Finish to close the wizard and import the certificate into the personal store.

Examine certificates in the Personal Store

1. Start the Microsoft Management Console by entering mmc.exe at a command prompt.

2. Select File, Add/Remove snap-in. Click Add. Select Certificates from the list of available snap-ins
in the dialog.

3. Click Add button in the dialog, and select the My user account radio button. This is used for
personal certificates.

4. Click the Finish button.

5. Click OK to close the Add/Remove Snap-in dialog.

6. You will now have Certificates – Current User displayed in the left panel of the Microsoft
Management Console. Expand the Certificates - Current User tree item and select Personal,
Certificates. The right-hand panel will display a certificate issued to MySQL. This is the certificate
that was previously imported. Double-click the certificate to display its details.

7. After you have imported the certificate to the Personal Store, you can use a more succint
connection string to connect to the database, as illustrated by the following code:

using (MySqlConnection connection = new MySqlConnection(
 "database=test;user=sslclient;" +
 "Certificate Store Location=CurrentUser;" +
 "SSL Mode=Required"))
{
 connection.Open();
}

Certificate Thumbprint Parameter

If you have a large number of certificates in your store, and many have the same Issuer, this can be a
source of confusion and result in the wrong certificate being used. To alleviate this situation, there is an
optional Certificate Thumbprint parameter that can additionally be specified as part of the connection
string. As mentioned before, you can double-click a certificate in the Microsoft Management Console to
display the certificate's details. When the Certificate dialog is displayed click the Details tab and scroll
down to see the thumbprint. The thumbprint will typically be a number such as 47 94 36 00 9a 40
f3 01 7a 14 5c f8 47 9e 76 94 d7 aa de f0. This thumbprint can be used in the connection
string, as the following code illustrates:

using (MySqlConnection connection = new MySqlConnection(
 "database=test;user=sslclient;" +
 "Certificate Store Location=CurrentUser;" +
 "Certificate Thumbprint=479436009a40f3017a145cf8479e7694d7aadef0;"+
 "SSL Mode=Required"))
{
 connection.Open();
}

Spaces in the thumbprint parameter are optional and the value is case-insensitive.

5.8. Tutorial: Using MySqlScript

This tutorial teaches you how to use the MySqlScript class. This class enables you to execute a
series of statements. Depending on the circumstances, this can be more convenient than using the
MySqlCommand approach.

Further details of the MySqlScript class can be found in the reference documentation supplied with
MySQL Connector/Net.

Tutorial: Using MySqlScript

83

To run the example programs in this tutorial, set up a simple test database and table using the mysql
Command Line Client or MySQL Workbench. Commands for the mysql Command Line Client are
given here:

CREATE DATABASE TestDB;
USE TestDB;
CREATE TABLE TestTable (id INT NOT NULL PRIMARY KEY
 AUTO_INCREMENT, name VARCHAR(100));

The main method of the MySqlScript class is the Execute method. This method causes the script
(sequence of statements) assigned to the Query property of the MySqlScript object to be executed.
Note the Query property can be set through the MySqlScript constructor or using the Query
property. Execute returns the number of statements executed.

The MySqlScript object will execute the specified script on the connection set using the Connection
property. Again, this property can be set directly or through the MySqlScript constructor. The
following code snippets illustrate this:

string sql = "SELECT * FROM TestTable";
...
MySqlScript script = new MySqlScript(conn, sql);
...
MySqlScript script = new MySqlScript();
script.Query = sql;
script.Connection = conn;
...
script.Execute();

The MySqlScript class has several events associated with it. There are:

1. Error - generated if an error occurs.

2. ScriptCompleted - generated when the script successfully completes execution.

3. StatementExecuted - generated after each statement is executed.

It is possible to assign event handlers to each of these events. These user-provided routines are called
back when the connected event occurs. The following code shows how the event handlers are set up.

script.Error += new MySqlScriptErrorEventHandler(script_Error);
script.ScriptCompleted += new EventHandler(script_ScriptCompleted);
script.StatementExecuted += new MySqlStatementExecutedEventHandler(script_StatementExecuted);

In VisualStudio, you can save typing by using tab completion to fill out stub routines. Start by typing, for
example, “script.Error +=”. Then press TAB, and then press TAB again. The assignment is completed,
and a stub event handler created. A complete working example is shown below:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;

namespace MySqlScriptTest
{
 class Program
 {
 static void Main(string[] args)
 {
 string connStr = "server=localhost;user=root;database=TestDB;port=3306;password=******;";
 MySqlConnection conn = new MySqlConnection(connStr);

 try

Using Delimiters with MySqlScript

84

 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "INSERT INTO TestTable(name) VALUES ('Superman');" +
 "INSERT INTO TestTable(name) VALUES ('Batman');" +
 "INSERT INTO TestTable(name) VALUES ('Wolverine');" +
 "INSERT INTO TestTable(name) VALUES ('Storm');";

 MySqlScript script = new MySqlScript(conn, sql);

 script.Error += new MySqlScriptErrorEventHandler(script_Error);
 script.ScriptCompleted += new EventHandler(script_ScriptCompleted);
 script.StatementExecuted += new MySqlStatementExecutedEventHandler(script_StatementExecuted);

 int count = script.Execute();

 Console.WriteLine("Executed " + count + " statement(s).");
 Console.WriteLine("Delimiter: " + script.Delimiter);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }

 static void script_StatementExecuted(object sender, MySqlScriptEventArgs args)
 {
 Console.WriteLine("script_StatementExecuted");
 }

 static void script_ScriptCompleted(object sender, EventArgs e)
 {
 /// EventArgs e will be EventArgs.Empty for this method
 Console.WriteLine("script_ScriptCompleted!");
 }

 static void script_Error(Object sender, MySqlScriptErrorEventArgs args)
 {
 Console.WriteLine("script_Error: " + args.Exception.ToString());
 }
 }
}

Note that in the script_ScriptCompleted event handler, the EventArgs parameter e will be
EventArgs.Empty. In the case of the ScriptCompleted event there is no additional data to be
obtained, which is why the event object is EventArgs.Empty.

5.8.1. Using Delimiters with MySqlScript

Depending on the nature of the script, you may need control of the delimiter used to separate the
statements that will make up a script. The most common example of this is where you have a multi-
statement stored routine as part of your script. In this case if the default delimiter of “;” is used you will
get an error when you attempt to execute the script. For example, consider the following stored routine:

CREATE PROCEDURE test_routine()
BEGIN
 SELECT name FROM TestTable ORDER BY name;
 SELECT COUNT(name) FROM TestTable;
END

This routine actually needs to be executed on the MySQL Server as a single statement. However, with
the default delimiter of “;”, the MySqlScript class would interpret the above as two statements, the
first being:

CREATE PROCEDURE test_routine()

Using Delimiters with MySqlScript

85

BEGIN
 SELECT name FROM TestTable ORDER BY name;

Executing this as a statement would generate an error. To solve this problem MySqlScript supports
the ability to set a different delimiter. This is achieved through the Delimiter property. For example, you
could set the delimiter to “??”, in which case the above stored routine would no longer generate an
error when executed. Multiple statements can be delimited in the script, so for example, you could have
a three statement script such as:

string sql = "DROP PROCEDURE IF EXISTS test_routine??" +
 "CREATE PROCEDURE test_routine() " +
 "BEGIN " +
 "SELECT name FROM TestTable ORDER BY name;" +
 "SELECT COUNT(name) FROM TestTable;" +
 "END??" +
 "CALL test_routine()";

You can change the delimiter back at any point by setting the Delimiter property. The following code
shows a complete working example:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using MySql.Data;
using MySql.Data.MySqlClient;

namespace ConsoleApplication8
{
 class Program
 {
 static void Main(string[] args)
 {
 string connStr = "server=localhost;user=root;database=TestDB;port=3306;password=******;";
 MySqlConnection conn = new MySqlConnection(connStr);

 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "DROP PROCEDURE IF EXISTS test_routine??" +
 "CREATE PROCEDURE test_routine() " +
 "BEGIN " +
 "SELECT name FROM TestTable ORDER BY name;" +
 "SELECT COUNT(name) FROM TestTable;" +
 "END??" +
 "CALL test_routine()";

 MySqlScript script = new MySqlScript(conn);

 script.Query = sql;
 script.Delimiter = "??";
 int count = script.Execute();
 Console.WriteLine("Executed " + count + " statement(s)");
 script.Delimiter = ";";
 Console.WriteLine("Delimiter: " + script.Delimiter);
 Console.WriteLine("Query: " + script.Query);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }
 }
}

Tutorial: Generating MySQL DDL from an Entity Framework Model

86

5.9. Tutorial: Generating MySQL DDL from an Entity Framework
Model

In this tutorial, you will learn how to create MySQL DDL from an Entity Framework model. Use Visual
Studio 2010 and MySQL Connector/Net 6.3 to carry out this tutorial.

1. Create a new console application in Visual Studio 2010.

2. Using the Solution Explorer, add a reference to MySql.Data.Entity.

3. From the Solution Explorer select Add, New Item. In the Add New Item dialog select Online
Templates. Select ADO.NET Entity Data Model and click Add. The Entity Data Model dialog will
be displayed.

4. In the Entity Data Model dialog select Empty Model. Click Finish. A blank model will be created.

5. Create a simple model. A single Entity will do for the purposes of this tutorial.

6. In the Properties panel select ConceptualEntityModel from the drop-down listbox.

7. In the Properties panel, locate the DDL Generation Template in the category Database Script
Generation.

8. For the DDL Generation property select SSDLToMySQL.tt(VS) from the drop-down listbox.

9. Save the solution.

10. Right-click an empty space in the model design area. The context-sensitive menu will be displayed.

11. From the context-sensitive menu select Generate Database from Model. The Generate Database
Wizard dialog will be displayed.

12. In the Generate Database Wizard dialog select an existing connection, or create a new connection
to a server. Select an appropriate radio button to show or hide sensitive data. For the purposes of
this tutorial you can select Yes (although you might skip this for commercial applications).

13. Click Next. MySQL compatible DDL code will be generated. Click Finish to exit the wizard.

You have seen how to create MySQL DDL code from an Entity Framework model.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_ddl

87

Chapter 6. Connector/Net Programming

Table of Contents
6.1. Connecting to MySQL Using Connector/Net .. 88
6.2. Creating a Connector/Net Connection String .. 88

6.2.1. Opening a Connection ... 88
6.2.2. Handling Connection Errors ... 90
6.2.3. Using GetSchema on a Connection .. 91

6.3. Using MySqlCommand ... 92
6.4. Using Connector/Net with Connection Pooling ... 93
6.5. Using the Windows Native Authentication Plugin ... 94
6.6. Writing a Custom Authentication Plugin ... 94
6.7. Using Connector/Net with Table Caching .. 98
6.8. Using the Connector/Net with Prepared Statements ... 98

6.8.1. Preparing Statements in Connector/Net .. 98
6.9. Accessing Stored Procedures with Connector/Net .. 99

6.9.1. Using Stored Routines from Connector/Net ... 100
6.10. Handling BLOB Data With Connector/Net .. 102

6.10.1. Preparing the MySQL Server .. 102
6.10.2. Writing a File to the Database .. 103
6.10.3. Reading a BLOB from the Database to a File on Disk .. 104

6.11. Using the Connector/Net Interceptor Classes ... 105
6.12. Handling Date and Time Information in Connector/Net ... 107

6.12.1. Fractional Seconds .. 107
6.12.2. Problems when Using Invalid Dates .. 107
6.12.3. Restricting Invalid Dates ... 107
6.12.4. Handling Invalid Dates ... 108
6.12.5. Handling NULL Dates .. 108

6.13. Using the MySqlBulkLoader Class ... 108
6.14. Using the MySQL Connector/Net Trace Source Object ... 110

6.14.1. Viewing MySQL Trace Information .. 111
6.14.2. Building Custom Listeners .. 113

6.15. Binary/Nonbinary Issues ... 115
6.16. Character Set Considerations for Connector/Net .. 115
6.17. Using Connector/Net with Crystal Reports ... 116

6.17.1. Creating a Data Source ... 116
6.17.2. Creating the Report ... 117
6.17.3. Displaying the Report ... 117

6.18. ASP.NET Provider Model .. 120
6.19. Working with Partial Trust / Medium Trust .. 122

6.19.1. Evolution of Partial Trust Support Across Connector/Net Versions 122
6.19.2. Configuring Partial Trust with Connector/Net Library Installed in GAC 123
6.19.3. Configuring Partial Trust with Connector/Net Library Not Installed in GAC 124

Connector/Net comprises several classes that are used to connect to the database, execute queries
and statements, and manage query results.

The following are the major classes of Connector/Net:

• MySqlCommand: Represents an SQL statement to execute against a MySQL database.

• MySqlCommandBuilder: Automatically generates single-table commands used to reconcile
changes made to a DataSet with the associated MySQL database.

• MySqlConnection: Represents an open connection to a MySQL Server database.

Connecting to MySQL Using Connector/Net

88

• MySqlDataAdapter: Represents a set of data commands and a database connection that are used
to fill a data set and update a MySQL database.

• MySqlDataReader: Provides a means of reading a forward-only stream of rows from a MySQL
database.

• MySqlException: The exception that is thrown when MySQL returns an error.

• MySqlHelper: Helper class that makes it easier to work with the provider.

• MySqlTransaction: Represents an SQL transaction to be made in a MySQL database.

In the following sections, you will learn about some common use cases for Connector/Net, including
BLOB handling, date handling, and using Connector/Net with common tools such as Crystal Reports.

6.1. Connecting to MySQL Using Connector/Net

All interaction between a .NET application and the MySQL server is routed through a
MySqlConnection object. Before your application can interact with the server, it must instantiate,
configure, and open a MySqlConnection object.

Even when using the MySqlHelper class, a MySqlConnection object is created by the helper class.

This section describes how to connect to MySQL using the MySqlConnection object.

6.2. Creating a Connector/Net Connection String

The MySqlConnection object is configured using a connection string. A connection string contains
several key/value pairs, separated by semicolons. In each key/value pair, the option name and its
corresponding value are joined by an equal sign. For the list of option names to use in the connection
string, see Chapter 7, Connector/Net Connection String Options Reference.

The following is a sample connection string:

Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;

In this example, the MySqlConnection object is configured to connect to a MySQL server at
127.0.0.1, with a user name of root and a password of 12345. The default database for all
statements will be the test database.

Note

Using the '@' symbol for parameters is now the preferred approach, although
the old pattern of using '?' is still supported. To avoid conflicts when using
the '@' symbol in combination with user variables, see the Allow User
Variables connection string option in Chapter 7, Connector/Net Connection
String Options Reference. The Old Syntax connection string option has now
been deprecated.

6.2.1. Opening a Connection

Once you have created a connection string it can be used to open a connection to the MySQL server.

The following code is used to create a MySqlConnection object, assign the connection string, and
open the connection.

Connector/Net can also connect using the native Windows authentication plugin. See Section 6.5,
“Using the Windows Native Authentication Plugin” for details.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction

Opening a Connection

89

You can further extend the authentication mechanism by writing your own authentication plugin. See
Section 6.6, “Writing a Custom Authentication Plugin” for details.

Visual Basic Example

Dim conn As New MySql.Data.MySqlClient.MySqlConnection
Dim myConnectionString as String
myConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test;"
Try
 conn.ConnectionString = myConnectionString
 conn.Open()
Catch ex As MySql.Data.MySqlClient.MySqlException
 MessageBox.Show(ex.Message)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;
myConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test;";
try
{
 conn = new MySql.Data.MySqlClient.MySqlConnection();
 conn.ConnectionString = myConnectionString;
 conn.Open();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show(ex.Message);
}

You can also pass the connection string to the constructor of the MySqlConnection class:

Visual Basic Example

Dim myConnectionString as String
myConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test;"
Try
 Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
 conn.Open()
Catch ex As MySql.Data.MySqlClient.MySqlException
 MessageBox.Show(ex.Message)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;
myConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test;";
try
{
 conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
 conn.Open();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show(ex.Message);
}

Once the connection is open it can be used by the other Connector/Net classes to communicate with
the MySQL server.

Handling Connection Errors

90

6.2.2. Handling Connection Errors

Because connecting to an external server is unpredictable, it is important to add error handling to
your .NET application. When there is an error connecting, the MySqlConnection class will return a
MySqlException object. This object has two properties that are of interest when handling errors:

• Message: A message that describes the current exception.

• Number: The MySQL error number.

When handling errors, you can your application's response based on the error number. The two most
common error numbers when connecting are as follows:

• 0: Cannot connect to server.

• 1045: Invalid user name and/or password.

The following code shows how to adapt the application's response based on the actual error:

Visual Basic Example

Dim myConnectionString as String
myConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test;"
Try
 Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
 conn.Open()
Catch ex As MySql.Data.MySqlClient.MySqlException
 Select Case ex.Number
 Case 0
 MessageBox.Show("Cannot connect to server. Contact administrator")
 Case 1045
 MessageBox.Show("Invalid username/password, please try again")
 End Select
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;
myConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test;";
try
{
 conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
 conn.Open();
}
 catch (MySql.Data.MySqlClient.MySqlException ex)
{
 switch (ex.Number)
 {
 case 0:
 MessageBox.Show("Cannot connect to server. Contact administrator");
 case 1045:
 MessageBox.Show("Invalid username/password, please try again");
 }
}

Important

Note that if you are using multilanguage databases you must specify the
character set in the connection string. If you do not specify the character set, the
connection defaults to the latin1 charset. You can specify the character set as
part of the connection string, for example:

Using GetSchema on a Connection

91

MySqlConnection myConnection = new MySqlConnection("server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test;Charset=latin1;");

6.2.3. Using GetSchema on a Connection

The GetSchema() method of the connection object can be used to retrieve schema information
about the database currently connected to. The schema information is returned in the form of a
DataTable. The schema information is organized into a number of collections. Different forms of the
GetSchema() method can be used depending on the information required. There are three forms of
the GetSchema() method:

• GetSchema() - This call will return a list of available collections.

• GetSchema(String) - This call returns information about the collection named in the string
parameter. If the string “MetaDataCollections” is used then a list of all available collections is
returned. This is the same as calling GetSchema() without any parameters.

• GetSchema(String, String[]) - In this call the first string parameter represents the collection
name, and the second parameter represents a string array of restriction values. Restriction values
limit the amount of data that will be returned. Restriction values are explained in more detail in the
Microsoft .NET documentation.

6.2.3.1. Collections

The collections can be broadly grouped into two types: collections that are common to all data
providers, and collections specific to a particular provider.

Common

The following collections are common to all data providers:

• MetaDataCollections

• DataSourceInformation

• DataTypes

• Restrictions

• ReservedWords

Provider-specific

The following are the collections currently provided by MySQL Connector/Net, in addition to the
common collections above:

• Databases

• Tables

• Columns

• Users

• Foreign Keys

• IndexColumns

• Indexes

• Foreign Key Columns

• UDF

http://msdn.microsoft.com/en-us/library/ms254934(VS.80).aspx

Using MySqlCommand

92

• Views

• ViewColumns

• Procedure Parameters

• Procedures

• Triggers

Example Code

A list of available collections can be obtained using the following code:

using System;
using System.Data;
using System.Text;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace ConsoleApplication2
{
 class Program
 {
 private static void DisplayData(System.Data.DataTable table)
 {
 foreach (System.Data.DataRow row in table.Rows)
 {
 foreach (System.Data.DataColumn col in table.Columns)
 {
 Console.WriteLine("{0} = {1}", col.ColumnName, row[col]);
 }
 Console.WriteLine("============================");
 }
 }
 static void Main(string[] args)
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 DataTable table = conn.GetSchema("MetaDataCollections");
 //DataTable table = conn.GetSchema("UDF");
 DisplayData(table);
 conn.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 Console.WriteLine("Done.");
 }
 }
}

Further information on the GetSchema() method and schema collections can be found in the
Microsoft .NET documentation.

6.3. Using MySqlCommand

A MySqlCommand has the CommandText and CommandType properties associated with it. The
CommandText will be handled differently depending on the setting of CommandType. CommandType
can be one of:

1. Text - A SQL text command (default)

2. StoredProcedure - The name of a Stored Procedure

http://msdn.microsoft.com/en-us/library/kcax58fh(VS.80).aspx

Using Connector/Net with Connection Pooling

93

3. TableDirect - The name of a table (new in Connector/Net 6.2)

The default CommandType, Text, is used for executing queries and other SQL commands. Some
example of this can be found in the following section Section 5.1.2, “The MySqlCommand Object”.

If CommandType is set to StoredProcedure, set CommandText to the name of the Stored Procedure
to access.

If CommandType is set to TableDirect, all rows and columns of the named table will be returned
when you call one of the Execute methods. In effect, this command performs a SELECT * on the table
specified. The CommandText property is set to the name of the table to query. This is illustrated by the
following code snippet:

...
MySqlCommand cmd = new MySqlCommand();
cmd.CommandText = "mytable";
cmd.Connection = someConnection;
cmd.CommandType = CommandType.TableDirect;
MySqlDataReader reader = cmd.ExecuteReader();
while (reader.Read())
{
 Console.WriteLn(reader[0], reader[1]...);
}
...

Examples of using the CommandType of StoredProcedure can be found in the section Section 6.9,
“Accessing Stored Procedures with Connector/Net”.

Commands can have a timeout associated with them. This is useful as you may not want a
situation were a command takes up an excessive amount of time. A timeout can be set using the
CommandTimeout property. The following code snippet sets a timeout of one minute:

MySqlCommand cmd = new MySqlCommand();
cmd.CommandTimeout = 60;

The default value is 30 seconds. Avoid a value of 0, which indicates an indefinite wait. To change the
default command timeout, use the connection string option Default Command Timeout.

Prior to MySQL Connector/Net 6.2, MySqlCommand.CommandTimeout included user processing
time, that is processing time not related to direct use of the connector. Timeout was implemented
through a .NET Timer, that triggered after CommandTimeout seconds. This timer consumed a thread.

MySQL Connector/Net 6.2 introduced timeouts that are aligned with how Microsoft handles
SqlCommand.CommandTimeout. This property is the cumulative timeout for all network reads
and writes during command execution or processing of the results. A timeout can still occur in the
MySqlReader.Read method after the first row is returned, and does not include user processing
time, only IO operations. The 6.2 implementation uses the underlying stream timeout facility, so is
more efficient in that it does not require the additional timer thread as was the case with the previous
implementation.

Further details on this can be found in the relevant Microsoft documentation.

6.4. Using Connector/Net with Connection Pooling

The Connector/Net supports connection pooling for better performance and scalability with database-
intensive applications. This is enabled by default. You can turn it off or adjust its performance
characteristics using the connection string options Pooling, Connection Reset, Connection
Lifetime, Cache Server Properties, Max Pool Size and Min Pool Size. See Section 6.2,
“Creating a Connector/Net Connection String” for further information.

Connection pooling works by keeping the native connection to the server live when the client disposes
of a MySqlConnection. Subsequently, if a new MySqlConnection object is opened, it will be

http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand.commandtimeout.aspx

Guidelines

94

created from the connection pool, rather than creating a new native connection. This improves
performance.

Guidelines

To work as designed, it is best to let the connection pooling system manage all connections. Do not
create a globally accessible instance of MySqlConnection and then manually open and close it. This
interferes with the way the pooling works and can lead to unpredictable results or even exceptions.

One approach that simplifies things is to avoid manually creating a MySqlConnection object. Instead
use the overloaded methods that take a connection string as an argument. Using this approach,
Connector/Net will automatically create, open, close and destroy connections, using the connection
pooling system for best performance.

Typed Datasets and the MembershipProvider and RoleProvider classes use this approach. Most
classes that have methods that take a MySqlConnection as an argument, also have methods that
take a connection string as an argument. This includes MySqlDataAdapter.

Instead of manually creating MySqlCommand objects, you can use the static methods of the
MySqlHelper class. These take a connection string as an argument, and they fully support
connection pooling.

Resource Usage

Starting with MySQL Connector/Net 6.2, there is a background job that runs every three minutes
and removes connections from pool that have been idle (unused) for more than three minutes. The
pool cleanup frees resources on both client and server side. This is because on the client side every
connection uses a socket, and on the server side every connection uses a socket and a thread.

Prior to this change, connections were never removed from the pool, and the pool always contained
the peak number of open connections. For example, a web application that peaked at 1000 concurrent
database connections would consume 1000 threads and 1000 open sockets at the server, without ever
freeing up those resources from the connection pool. Note, connections, no matter how old, will not be
closed if the number of connections in the pool is less than or equal to the value set by the Min Pool
Size connection string parameter.

6.5. Using the Windows Native Authentication Plugin

Connector/Net applications can authenticate to a MySQL server using the Windows Native
Authentication Plugin as of Connector/Net 6.4.4 and MySQL 5.5.16. Users who have logged in to
Windows can connect from MySQL client programs to the server based on the information in their
environment without specifying an additional password. For background and usage information about
the authentication plugin, see, The Windows Native Authentication Plugin.

The interface matches the MySql.Data.MySqlClient object. To enable, pass in Integrated
Security to the connection string with a value of yes or sspi.

Passing in a user ID is optional. When Windows authentication is set up, a MySQL user is created and
configured to be used by Windows authentication. By default, this user ID is named auth_windows,
but can be defined using a different name. If the default name is used, then passing the user ID to
the connection string from Connector/Net is optional, because it will use the auth_windows user.
Otherwise, the name must be passed to the connection string using the standard user ID element.

6.6. Writing a Custom Authentication Plugin

Advanced users with special security requirements can create their own authentication plugins for
Connector/Net applications. You can extend the handshake protocol, adding custom logic. This
capability requires Connector/Net 6.6.3 or higher, and MySQL 5.5.16 or higher. For background and

http://dev.mysql.com/doc/refman/5.5/en/windows-authentication-plugin.html

How the Custom Authentication Plugin Works

95

usage information about MySQL authentication plugins, see, Authentication Plugins and Writing
Authentication Plugins.

To write a custom authentication plugin, you will need a reference to the assembly MySql.Data.dll.
The classes relevant for writing authentication plugins are available at the namespace
MySql.Data.MySqlClient.Authentication.

How the Custom Authentication Plugin Works

At some point during handshake, the internal method

void Authenticate(bool reset)

of MySqlAuthenticationPlugin is called. This method in turns calls several overridable methods
of the current plugin.

Creating the Authentication Plugin Class

You put the authentication plugin logic inside a new class derived from
MySql.Data.MySqlClient.Authentication.MySqlAuthenticationPlugin. The following
methods are available to be overridden:

protected virtual void CheckConstraints()
protected virtual void AuthenticationFailed(Exception ex)
protected virtual void AuthenticationSuccessful()
protected virtual byte[] MoreData(byte[] data)
protected virtual void AuthenticationChange()
public abstract string PluginName { get; }
public virtual string GetUsername()
public virtual object GetPassword()
protected byte[] AuthData;

The following is a brief explanation of each one:

/// <summary>
/// This method must check authentication method specific constraints in the
environment and throw an Exception
/// if the conditions are not met. The default implementation does nothing.
/// </summary>
protected virtual void CheckConstraints()
/// <summary>
/// This method, called when the authentication failed, provides a chance to
plugins to manage the error
/// the way they consider decide (either showing a message, logging it, etc.).
/// The default implementation wraps the original exception in a MySqlException
with an standard message and rethrows it.
/// </summary>
/// <param name="ex">The exception with extra information on the error.</param>
protected virtual void AuthenticationFailed(Exception ex)
/// <summary>
/// This method is invoked when the authentication phase was successful accepted
by the server.
/// Derived classes must override this if they want to be notified of such
condition.
/// </summary>
/// <remarks>The default implementation does nothing.</remarks>
protected virtual void AuthenticationSuccessful()
/// <summary>
/// This method provides a chance for the plugin to send more data when the
server requests so during the
/// authentication phase. This method will be called at least once, and more
than one depending upon whether the
/// server response packets have the 0x01 prefix.
/// </summary>
/// <param name="data">The response data from the server, during the
authentication phase the first time is called is null, in

http://dev.mysql.com/doc/refman/5.5/en/authentication-plugins.html
http://dev.mysql.com/doc/refman/5.5/en/writing-authentication-plugins.html
http://dev.mysql.com/doc/refman/5.5/en/writing-authentication-plugins.html

Sample Authentication Plugin

96

subsequent calls contains the server response.</param>
/// <returns>The data generated by the plugin for server consumption.</returns>
/// <remarks>The default implementation always returns null.</remarks>
protected virtual byte[] MoreData(byte[] data)
/// <summary>
/// The plugin name.
/// </summary>
public abstract string PluginName { get; }
/// <summary>
/// Gets the user name to send to the server in the authentication phase.
/// </summary>
/// <returns>An string with the user name</returns>
/// <remarks>Default implementation returns the UserId passed from the
connection string.</remarks>
public virtual string GetUsername()
/// <summary>
/// Gets the password to send to the server in the authentication phase. This
can can be an string or a
/// </summary>
/// <returns>An object, can be byte[], string or null, with the password.
</returns>
/// <remarks>Default implementation returns null.</remarks>
public virtual object GetPassword()
/// <summary>
/// The authentication data passed when creating the plugin.
/// For example in mysql_native_password this is the seed to encrypt the
password.
/// </summary>
protected byte[] AuthData;

Sample Authentication Plugin

Here is an example showing how to create the authentication plugin, then enable it by means of a
configuration file. Follow these steps:

1. Create a console app, adding a reference to MySql.Data.dll.

2. Design the main program as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MySql.Data.MySqlClient;
namespace AuthPluginTest
{
 class Program
 {
 static void Main(string[] args)
 {
 // Customize the connection string as necessary.
 MySqlConnection con = new MySqlConnection("server=localhost;
database=test; user id=myuser; password=mypass");
 con.Open();
 con.Close();
 }
 }
}

3. Create your plugin class. In this example, we add an “alternative” implementation of the Native
password plugin by just using the same code from the original plugin. We name our class
MySqlNativePasswordPlugin2:

using System.IO;
using System;
using System.Text;
using System.Security.Cryptography;
using MySql.Data.MySqlClient.Authentication;

Sample Authentication Plugin

97

using System.Diagnostics;
namespace AuthPluginTest
{
 public class MySqlNativePasswordPlugin2 : MySqlAuthenticationPlugin
 {
 public override string PluginName
 {
 get { return "mysql_native_password"; }
 }
 public override object GetPassword()
 {
 Debug.WriteLine("Calling MySqlNativePasswordPlugin2.GetPassword");
 return Get411Password(Settings.Password, AuthData);
 }
 /// <summary>
 /// Returns a byte array containing the proper encryption of the
 /// given password/seed according to the new 4.1.1 authentication scheme.
 /// </summary>
 /// <param name="password"></param>
 /// <param name="seed"></param>
 /// <returns></returns>
 private byte[] Get411Password(string password, byte[] seedBytes)
 {
 // if we have no password, then we just return 1 zero byte
 if (password.Length == 0) return new byte[1];
 SHA1 sha = new SHA1CryptoServiceProvider();
 byte[] firstHash = sha.ComputeHash(Encoding.Default.GetBytes(password));
 byte[] secondHash = sha.ComputeHash(firstHash);
 byte[] input = new byte[seedBytes.Length + secondHash.Length];
 Array.Copy(seedBytes, 0, input, 0, seedBytes.Length);
 Array.Copy(secondHash, 0, input, seedBytes.Length, secondHash.Length);
 byte[] thirdHash = sha.ComputeHash(input);
 byte[] finalHash = new byte[thirdHash.Length + 1];
 finalHash[0] = 0x14;
 Array.Copy(thirdHash, 0, finalHash, 1, thirdHash.Length);
 for (int i = 1; i < finalHash.Length; i++)
 finalHash[i] = (byte)(finalHash[i] ^ firstHash[i - 1]);
 return finalHash;
 }
 }
}

4. Notice that the plugin implementation just overrides GetPassword, and provides an implementaion
to encrypt the password using the 4.1 protocol. We also put the following line in the GetPassword
body:

Debug.WriteLine("Calling MySqlNativePasswordPlugin2.GetPassword");

to provide confirmation that the plugin was effectively used. (You could also put a breakpoint on
that method.)

5. Enable the new plugin in the configuration file:

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="MySQL" type="MySql.Data.MySqlClient.MySqlConfiguration,
MySql.Data"/>
 </configSections>
 <MySQL>
 <AuthenticationPlugins>
 <add name="mysql_native_password"
type="AuthPluginTest.MySqlNativePasswordPlugin2, AuthPluginTest"></add>
 </AuthenticationPlugins>
 </MySQL>
<startup><supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
</startup></configuration>

6. Run the application. In Visual Studio, you will see the message Calling
MySqlNativePasswordPlugin2.GetPassword in the debug window.

Using Connector/Net with Table Caching

98

7. Continue enhancing the authentication logic, overriding more methods if you required.

6.7. Using Connector/Net with Table Caching

This feature exists with Connector/Net versions 6.4 and above.

Table caching is a feature that can be used to cache slow-changing datasets on the client side. This is
useful for applications that are designed to use readers, but still want to minimize trips to the server for
slow-changing tables.

This feature is transparent to the application, and is disabled by default.

Configuration

• To enable table caching, add 'table cache = true' to the connection string.

• Optionally, specify the 'Default Table Cache Age' connection string option, which represents
the number of seconds a table is cached before the cached data is discarded. The default value is
60.

• You can turn caching on and off and set caching options at runtime, on a per-command basis.

6.8. Using the Connector/Net with Prepared Statements

As of MySQL 4.1, it is possible to use prepared statements with Connector/Net. Use of prepared
statements can provide significant performance improvements on queries that are executed more than
once.

Prepared execution is faster than direct execution for statements executed more than once, primarily
because the query is parsed only once. In the case of direct execution, the query is parsed every time
it is executed. Prepared execution also can provide a reduction of network traffic because for each
execution of the prepared statement, it is necessary only to send the data for the parameters.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

6.8.1. Preparing Statements in Connector/Net

To prepare a statement, create a command object and set the .CommandText property to your query.

After entering your statement, call the .Prepare method of the MySqlCommand object. After the
statement is prepared, add parameters for each of the dynamic elements in the query.

After you enter your query and enter parameters, execute the statement using the
.ExecuteNonQuery(), .ExecuteScalar(), or .ExecuteReader methods.

For subsequent executions, you need only modify the values of the parameters and call the execute
method again, there is no need to set the .CommandText property or redefine the parameters.

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
conn.ConnectionString = strConnection
Try
 conn.Open()
 cmd.Connection = conn
 cmd.CommandText = "INSERT INTO myTable VALUES(NULL, @number, @text)"
 cmd.Prepare()
 cmd.Parameters.AddWithValue("@number", 1)

Accessing Stored Procedures with Connector/Net

99

 cmd.Parameters.AddWithValue("@text", "One")
 For i = 1 To 1000
 cmd.Parameters("@number").Value = i
 cmd.Parameters("@text").Value = "A string value"
 cmd.ExecuteNonQuery()
 Next
Catch ex As MySqlException
 MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
conn.ConnectionString = strConnection;
try
{
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandText = "INSERT INTO myTable VALUES(NULL, @number, @text)";
 cmd.Prepare();
 cmd.Parameters.AddWithValue("@number", 1);
 cmd.Parameters.AddWithValue("@text", "One");
 for (int i=1; i <= 1000; i++)
 {
 cmd.Parameters["@number"].Value = i;
 cmd.Parameters["@text"].Value = "A string value";
 cmd.ExecuteNonQuery();
 }
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
 "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

6.9. Accessing Stored Procedures with Connector/Net

MySQL server version 5 and up supports stored procedures with the SQL 2003 stored procedure
syntax.

A stored procedure is a set of SQL statements that is stored in the server. Clients make a single call to
the stored procedure, passing parameters that can influence the procedure logic and query conditions,
rather than issuing individual hardcoded SQL statements.

Stored procedures can be particularly useful in situations such as the following:

• Stored procedures can act as an API or abstraction layer, allowing multiple client applications to
perform the same database operations. The applications can be written in different languages and
run on different platforms. The applications do not need to hardcode table and column names,
complicated queries, and so on. When you extend and optimize the queries in a stored procedure, all
the applications that call the procedure automatically receive the benefits.

• When security is paramount, stored procedures keep applications from directly manipulating
tables, or even knowing details such as table and column names. Banks, for example, use stored
procedures for all common operations. This provides a consistent and secure environment, and
procedures can ensure that each operation is properly logged. In such a setup, applications and
users would not get any access to the database tables directly, but can only execute specific stored
procedures.

Connector/Net supports the calling of stored procedures through the MySqlCommand object. Data can
be passed in and out of a MySQL stored procedure through use of the MySqlCommand.Parameters
collection.

Using Stored Routines from Connector/Net

100

Note

When you call a stored procedure, the command object makes an additional
SELECT call to determine the parameters of the stored procedure. You must
ensure that the user calling the procedure has the SELECT privilege on the
mysql.proc table to enable them to verify the parameters. Failure to do this
will result in an error when calling the procedure.

This section will not provide in-depth information on creating Stored Procedures. For such information,
please refer to http://dev.mysql.com/doc/mysql/en/stored-routines.html.

A sample application demonstrating how to use stored procedures with Connector/Net can be found in
the Samples directory of your Connector/Net installation.

6.9.1. Using Stored Routines from Connector/Net

Stored procedures in MySQL can be created using a variety of tools. First, stored procedures can
be created using the mysql command-line client. Second, stored procedures can be created using
MySQL Workbench. Finally, stored procedures can be created using the .ExecuteNonQuery method
of the MySqlCommand object.

Unlike the command-line and GUI clients, you are not required to specify a special delimiter when
creating stored procedures in Connector/Net.

To call a stored procedure using Connector/Net, you create a MySqlCommand object and pass the
stored procedure name as the .CommandText property. You then set the .CommandType property to
CommandType.StoredProcedure.

After the stored procedure is named, you create one MySqlCommand parameter for every parameter
in the stored procedure. IN parameters are defined with the parameter name and the object containing
the value, OUT parameters are defined with the parameter name and the data type that is expected to
be returned. All parameters need the parameter direction defined.

After defining the parameters, you call the stored procedure by using the
MySqlCommand.ExecuteNonQuery() method.

Once the stored procedure is called, the values of the output parameters can be retrieved by using the
.Value property of the MySqlConnector.Parameters collection.

Note

When a stored procedure is called using MySqlCommand.ExecuteReader,
and the stored procedure has output parameters, the output parameters are
only set after the MySqlDataReader returned by ExecuteReader is closed.

The following C# example code demonstrates the use of stored procedures. It assumes the database
'employees' has already been created:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace UsingStoredRoutines
{
 class Program
 {
 static void Main(string[] args)
 {
 MySqlConnection conn = new MySqlConnection();
 conn.ConnectionString = "server=localhost;user=root;database=employees;port=3306;password=******;";

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_select
http://dev.mysql.com/doc/mysql/en/stored-routines.html

Using Stored Routines from Connector/Net

101

 MySqlCommand cmd = new MySqlCommand();
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandText = "DROP PROCEDURE IF EXISTS add_emp";
 cmd.ExecuteNonQuery();
 cmd.CommandText = "DROP TABLE IF EXISTS emp";
 cmd.ExecuteNonQuery();
 cmd.CommandText = "CREATE TABLE emp (empno INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, first_name VARCHAR(20), last_name VARCHAR(20), birthdate DATE)";
 cmd.ExecuteNonQuery();
 cmd.CommandText = "CREATE PROCEDURE add_emp(" +
 "IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT)" +
 "BEGIN INSERT INTO emp(first_name, last_name, birthdate) " +
 "VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END";
 cmd.ExecuteNonQuery();
 }
 catch (MySqlException ex)
 {
 Console.WriteLine ("Error " + ex.Number + " has occurred: " + ex.Message);
 }
 conn.Close();
 Console.WriteLine("Connection closed.");
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandText = "add_emp";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.AddWithValue("@lname", "Jones");
 cmd.Parameters["@lname"].Direction = ParameterDirection.Input;
 cmd.Parameters.AddWithValue("@fname", "Tom");
 cmd.Parameters["@fname"].Direction = ParameterDirection.Input;
 cmd.Parameters.AddWithValue("@bday", "1940-06-07");
 cmd.Parameters["@bday"].Direction = ParameterDirection.Input;
 cmd.Parameters.AddWithValue("@empno", MySqlDbType.Int32);
 cmd.Parameters["@empno"].Direction = ParameterDirection.Output;
 cmd.ExecuteNonQuery();
 Console.WriteLine("Employee number: "+cmd.Parameters["@empno"].Value);
 Console.WriteLine("Birthday: " + cmd.Parameters["@bday"].Value);
 }
 catch (MySql.Data.MySqlClient.MySqlException ex)
 {
 Console.WriteLine("Error " + ex.Number + " has occurred: " + ex.Message);
 }
 conn.Close();
 Console.WriteLine("Done.");
 }
 }
}

The following code shows the same application in Visual Basic:

Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports System.Data
Imports MySql.Data
Imports MySql.Data.MySqlClient
Module Module1
 Sub Main()
 Dim conn As New MySqlConnection()
 conn.ConnectionString = "server=localhost;user=root;database=world;port=3306;password=******;"
 Dim cmd As New MySqlCommand()
 Try
 Console.WriteLine("Connecting to MySQL...")
 conn.Open()
 cmd.Connection = conn

Handling BLOB Data With Connector/Net

102

 cmd.CommandText = "DROP PROCEDURE IF EXISTS add_emp"
 cmd.ExecuteNonQuery()
 cmd.CommandText = "DROP TABLE IF EXISTS emp"
 cmd.ExecuteNonQuery()
 cmd.CommandText = "CREATE TABLE emp (empno INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, first_name VARCHAR(20), last_name VARCHAR(20), birthdate DATE)"
 cmd.ExecuteNonQuery()
 cmd.CommandText = "CREATE PROCEDURE add_emp(" & "IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT)" & "BEGIN INSERT INTO emp(first_name, last_name, birthdate) " & "VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END"
 cmd.ExecuteNonQuery()
 Catch ex As MySqlException
 Console.WriteLine(("Error " & ex.Number & " has occurred: ") + ex.Message)
 End Try
 conn.Close()
 Console.WriteLine("Connection closed.")
 Try
 Console.WriteLine("Connecting to MySQL...")
 conn.Open()
 cmd.Connection = conn
 cmd.CommandText = "add_emp"
 cmd.CommandType = CommandType.StoredProcedure
 cmd.Parameters.AddWithValue("@lname", "Jones")
 cmd.Parameters("@lname").Direction = ParameterDirection.Input
 cmd.Parameters.AddWithValue("@fname", "Tom")
 cmd.Parameters("@fname").Direction = ParameterDirection.Input
 cmd.Parameters.AddWithValue("@bday", "1940-06-07")
 cmd.Parameters("@bday").Direction = ParameterDirection.Input
 cmd.Parameters.AddWithValue("@empno", MySqlDbType.Int32)
 cmd.Parameters("@empno").Direction = ParameterDirection.Output
 cmd.ExecuteNonQuery()
 Console.WriteLine("Employee number: " & cmd.Parameters("@empno").Value)
 Console.WriteLine("Birthday: " & cmd.Parameters("@bday").Value)
 Catch ex As MySql.Data.MySqlClient.MySqlException
 Console.WriteLine(("Error " & ex.Number & " has occurred: ") + ex.Message)
 End Try
 conn.Close()
 Console.WriteLine("Done.")
 End Sub
End Module

6.10. Handling BLOB Data With Connector/Net
One common use for MySQL is the storage of binary data in BLOB columns. MySQL supports four
different BLOB data types: TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB, all described in The BLOB
and TEXT Types and Data Type Storage Requirements.

Data stored in a BLOB column can be accessed using Connector/Net and manipulated using client-side
code. There are no special requirements for using Connector/Net with BLOB data.

Simple code examples will be presented within this section, and a full sample application can be found
in the Samples directory of the Connector/Net installation.

6.10.1. Preparing the MySQL Server

The first step is using MySQL with BLOB data is to configure the server. Let's start by creating a
table to be accessed. In my file tables, I usually have four columns: an AUTO_INCREMENT column
of appropriate size (UNSIGNED SMALLINT) to serve as a primary key to identify the file, a VARCHAR
column that stores the file name, an UNSIGNED MEDIUMINT column that stores the size of the file,
and a MEDIUMBLOB column that stores the file itself. For this example, I will use the following table
definition:

CREATE TABLE file(
file_id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
file_name VARCHAR(64) NOT NULL,
file_size MEDIUMINT UNSIGNED NOT NULL,
file MEDIUMBLOB NOT NULL);

After creating a table, you might need to modify the max_allowed_packet system variable. This
variable determines how large of a packet (that is, a single row) can be sent to the MySQL server. By

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/storage-requirements.html

Writing a File to the Database

103

default, the server only accepts a maximum size of 1MB from the client application. If you intend to
exceed 1MB in your file transfers, increase this number.

The max_allowed_packet option can be modified using the MySQL Workbench Server
Administration screen. Adjust the Maximum permitted option in the Data / Memory size section of the
Networking tab to an appropriate setting. After adjusting the value, click the Apply button and restart
the server using the Startup / Shutdown screen of MySQL Workbench. You can also adjust this
value directly in the my.cnf file (add a line that reads max_allowed_packet=xxM), or use the SET
max_allowed_packet=xxM; syntax from within MySQL.

Try to be conservative when setting max_allowed_packet, as transfers of BLOB data can take some
time to complete. Try to set a value that will be adequate for your intended use and increase the value
if necessary.

6.10.2. Writing a File to the Database

To write a file to a database, we need to convert the file to a byte array, then use the byte array as a
parameter to an INSERT query.

The following code opens a file using a FileStream object, reads it into a byte array, and inserts it into
the file table:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim SQL As String
Dim FileSize As UInt32
Dim rawData() As Byte
Dim fs As FileStream
conn.ConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test"
Try
 fs = New FileStream("c:\image.png", FileMode.Open, FileAccess.Read)
 FileSize = fs.Length
 rawData = New Byte(FileSize) {}
 fs.Read(rawData, 0, FileSize)
 fs.Close()
 conn.Open()
 SQL = "INSERT INTO file VALUES(NULL, @FileName, @FileSize, @File)"
 cmd.Connection = conn
 cmd.CommandText = SQL
 cmd.Parameters.AddWithValue("@FileName", strFileName)
 cmd.Parameters.AddWithValue("@FileSize", FileSize)
 cmd.Parameters.AddWithValue("@File", rawData)
 cmd.ExecuteNonQuery()
 MessageBox.Show("File Inserted into database successfully!", _
 "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)
 conn.Close()
Catch ex As Exception
 MessageBox.Show("There was an error: " & ex.Message, "Error", _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;
conn.ConnectionString = "server=127.0.0.1;uid=root;" +

http://dev.mysql.com/doc/refman/5.5/en/insert.html

Reading a BLOB from the Database to a File on Disk

104

 "pwd=12345;database=test;";
try
{
 fs = new FileStream(@"c:\image.png", FileMode.Open, FileAccess.Read);
 FileSize = fs.Length;
 rawData = new byte[FileSize];
 fs.Read(rawData, 0, FileSize);
 fs.Close();
 conn.Open();
 SQL = "INSERT INTO file VALUES(NULL, @FileName, @FileSize, @File)";
 cmd.Connection = conn;
 cmd.CommandText = SQL;
 cmd.Parameters.AddWithValue("@FileName", strFileName);
 cmd.Parameters.AddWithValue("@FileSize", FileSize);
 cmd.Parameters.AddWithValue("@File", rawData);
 cmd.ExecuteNonQuery();
 MessageBox.Show("File Inserted into database successfully!",
 "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);
 conn.Close();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
 "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

The Read method of the FileStream object is used to load the file into a byte array which is sized
according to the Length property of the FileStream object.

After assigning the byte array as a parameter of the MySqlCommand object, the ExecuteNonQuery
method is called and the BLOB is inserted into the file table.

6.10.3. Reading a BLOB from the Database to a File on Disk

Once a file is loaded into the file table, we can use the MySqlDataReader class to retrieve it.

The following code retrieves a row from the file table, then loads the data into a FileStream object
to be written to disk:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myData As MySqlDataReader
Dim SQL As String
Dim rawData() As Byte
Dim FileSize As UInt32
Dim fs As FileStream
conn.ConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test"
SQL = "SELECT file_name, file_size, file FROM file"
Try
 conn.Open()
 cmd.Connection = conn
 cmd.CommandText = SQL
 myData = cmd.ExecuteReader
 If Not myData.HasRows Then Throw New Exception("There are no BLOBs to save")
 myData.Read()
 FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"))
 rawData = New Byte(FileSize) {}
 myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, FileSize)
 fs = New FileStream("C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write)
 fs.Write(rawData, 0, FileSize)
 fs.Close()
 MessageBox.Show("File successfully written to disk!", "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)
 myData.Close()
 conn.Close()

Using the Connector/Net Interceptor Classes

105

Catch ex As Exception
 MessageBox.Show("There was an error: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataReader myData;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test;";
SQL = "SELECT file_name, file_size, file FROM file";
try
{
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandText = SQL;
 myData = cmd.ExecuteReader();
 if (! myData.HasRows)
 throw new Exception("There are no BLOBs to save");
 myData.Read();
 FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"));
 rawData = new byte[FileSize];
 myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, (int)FileSize);
 fs = new FileStream(@"C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write);
 fs.Write(rawData, 0, (int)FileSize);
 fs.Close();
 MessageBox.Show("File successfully written to disk!",
 "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);
 myData.Close();
 conn.Close();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
 "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

After connecting, the contents of the file table are loaded into a MySqlDataReader object. The
GetBytes method of the MySqlDataReader is used to load the BLOB into a byte array, which is then
written to disk using a FileStream object.

The GetOrdinal method of the MySqlDataReader can be used to determine the integer index of a
named column. Use of the GetOrdinal method prevents errors if the column order of the SELECT query
is changed.

6.11. Using the Connector/Net Interceptor Classes
An interceptor is a software design pattern that provides a transparent way to extend or modify
some aspect of a program, similar to a user exit. No recompiling is required. With Connector/Net, the
interceptors are enabled and disabled by updating the connection string to refer to different sets of
interceptor classes that you instantiate.

Connector/Net includes the following interceptor classes:

• The BaseCommandInterceptor lets you perform additional operations when a program issues
a SQL command. For example, you can examine the SQL statement for logging or debugging
purposes, substitute your own result set to implement a caching mechanism, and so on. Depending
on the use case, your code can supplement the SQL command or replace it entirely.

The BaseCommandInterceptor class has these methods that you can override:

http://dev.mysql.com/doc/refman/5.5/en/select.html

Using the Connector/Net Interceptor Classes

106

public virtual bool ExecuteScalar(string sql, ref object returnValue);
public virtual bool ExecuteNonQuery(string sql, ref int returnValue);
public virtual bool ExecuteReader(string sql, CommandBehavior behavior, ref MySqlDataReader returnValue);
public virtual void Init(MySqlConnection connection);

If your interceptor overrides one of the Execute... methods, set the returnValue output
parameter and return true if you handled the event, or false if you did not handle the event. The
SQL command is processed normally only when all command interceptors return false.

The connection passed to the Init method is the connection that is attached to this interceptor.

• The BaseExceptionInterceptor lets you perform additional operations when a program
encounters a SQL exception. The exception interception mechanism is modeled after the
Connector/J model. You can code an interceptor class and connect it to an existing program without
recompiling, and intercept exceptions when they are created. You can then change the exception
type and optionally attach information to it. This capability lets you turn on and off logging and
debugging code without hardcoding anything in the application. This technique applies to exceptions
raised at the SQL level, not to lower-level system or I/O errors.

You develop an exception interceptor first by creating a subclass of the
BaseExceptionInterceptor class. You must override the InterceptException() method.
You can also override the Init() method to do some one-time initialization.

Each exception interceptor has 2 methods:

public abstract Exception InterceptException(Exception exception,
 MySqlConnection connection);
public virtual void Init(MySqlConnection connection);

The connection passed to Init() is the connection that is attached to this interceptor.

Each interceptor is required to override InterceptException and return an exception. It can
return the exception it is given, or it can wrap it in a new exception. We currently do not offer the
ability to suppress the exception.

Here are examples of using the FQN (fully qualified name) on the connection string:

MySqlConnection c1 = new MySqlConnection(@"server=localhost;pooling=false;
commandinterceptors=CommandApp.MyCommandInterceptor,CommandApp");
MySqlConnection c2 = new MySqlConnection(@"server=localhost;pooling=false;
exceptioninterceptors=ExceptionStackTraceTest.MyExceptionInterceptor,ExceptionStackTraceTest");

In this example, the command interceptor is called CommandApp.MyCommandInterceptor
and exists in the CommandApp assembly. The exception interceptor is called
ExceptionStackTraceTest.MyExceptionInterceptor and exists in the
ExceptionStackTraceTest assembly.

To shorten the connection string, you can register your exception interceptors in your app.config or
web.config file like this:

<configSections>
<section name="MySQL" type="MySql.Data.MySqlClient.MySqlConfiguration,
MySql.Data"/>
</configSections>
<MySQL>
<CommandInterceptors>
 <add name="myC" type="CommandApp.MyCommandInterceptor,CommandApp" />
</CommandInterceptors>
</MySQL>
<configSections>
<section name="MySQL" type="MySql.Data.MySqlClient.MySqlConfiguration,
MySql.Data"/>
</configSections>
<MySQL>

Handling Date and Time Information in Connector/Net

107

<ExceptionInterceptors>
 <add name="myE"
type="ExceptionStackTraceTest.MyExceptionInterceptor,ExceptionStackTraceTest" />
</ExceptionInterceptors>
</MySQL>

Once you have done that, your connection strings can look like these:

MySqlConnection c1 = new MySqlConnection(@"server=localhost;pooling=false;
commandinterceptors=myC");
MySqlConnection c2 = new MySqlConnection(@"server=localhost;pooling=false;
exceptioninterceptors=myE");

6.12. Handling Date and Time Information in Connector/Net

MySQL and the .NET languages handle date and time information differently, with MySQL allowing
dates that cannot be represented by a .NET data type, such as '0000-00-00 00:00:00'. These
differences can cause problems if not properly handled.

The following sections demonstrate how to properly handle date and time information when using
Connector/Net.

6.12.1. Fractional Seconds

Connector/Net 6.5 and higher support the fractional seconds feature introduced in MySQL 5.6.4.
Fractional seconds could always be specified in a date literal or passed back and forth as parameters
and return values, but the fractional part was always stripped off when stored in a table column. In
MySQL 5.6.4 and higher, the fractional part is now preserved in data stored and retrieved through SQL.
For fractional second handling in MySQL 5.6.4 and higher, see Fractional Seconds in Time Values. For
the behavior of fractional seconds prior to MySQL 5.6.4, see Fractional Seconds in Time Values.

To use the more precise date and time types, specify a value from 1 to 6 when creating the table
column, for example TIME(3) or DATETIME(6), representing the number of digits of precision after
the decimal point. Specifying a precision of 0 leaves the fractional part out entirely. In your C# or
Visual Basic code, refer to the Millisecond member to retrieve the fractional second value from the
MySqlDateTime object returned by the GetMySqlDateTime function. The DateTime object returned
by the GetDateTime function also contains the fractional value, but only the first 3 digits.

For related code examples, see the following blog post: https://blogs.oracle.com/MySqlOnWindows/
entry/milliseconds_value_support_on_datetime

6.12.2. Problems when Using Invalid Dates

The differences in date handling can cause problems for developers who use invalid dates. Invalid
MySQL dates cannot be loaded into native .NET DateTime objects, including NULL dates.

Because of this issue, .NET DataSet objects cannot be populated by the Fill method of the
MySqlDataAdapter class as invalid dates will cause a System.ArgumentOutOfRangeException
exception to occur.

6.12.3. Restricting Invalid Dates

The best solution to the date problem is to restrict users from entering invalid dates. This can be done
on either the client or the server side.

Restricting invalid dates on the client side is as simple as always using the .NET DateTime class
to handle dates. The DateTime class will only allow valid dates, ensuring that the values in your
database are also valid. The disadvantage of this is that it is not useful in a mixed environment
where .NET and non .NET code are used to manipulate the database, as each application must
perform its own date validation.

http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html
http://dev.mysql.com/doc/refman/5.5/en/fractional-seconds.html
https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support_on_datetime
https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support_on_datetime

Handling Invalid Dates

108

Users of MySQL 5.0.2 and higher can use the new traditional SQL mode to restrict invalid date
values. For information on using the traditional SQL mode, see Server SQL Modes.

6.12.4. Handling Invalid Dates

Although it is strongly recommended that you avoid the use of invalid dates within your .NET
application, it is possible to use invalid dates by means of the MySqlDateTime data type.

The MySqlDateTime data type supports the same date values that are supported by the MySQL
server. The default behavior of Connector/Net is to return a .NET DateTime object for valid date values,
and return an error for invalid dates. This default can be modified to cause Connector/Net to return
MySqlDateTime objects for invalid dates.

To instruct Connector/Net to return a MySqlDateTime object for invalid dates, add the following line to
your connection string:

Allow Zero Datetime=True

Please note that the use of the MySqlDateTime class can still be problematic. The following are some
known issues:

1. Data binding for invalid dates can still cause errors (zero dates like 0000-00-00 do not seem to
have this problem).

2. The ToString method return a date formatted in the standard MySQL format (for example,
2005-02-23 08:50:25). This differs from the ToString behavior of the .NET DateTime class.

3. The MySqlDateTime class supports NULL dates, while the .NET DateTime class does not. This
can cause errors when trying to convert a MySQLDateTime to a DateTime if you do not check for
NULL first.

Because of the known issues, the best recommendation is still to use only valid dates in your
application.

6.12.5. Handling NULL Dates

The .NET DateTime data type cannot handle NULL values. As such, when assigning values from a
query to a DateTime variable, you must first check whether the value is in fact NULL.

When using a MySqlDataReader, use the .IsDBNull method to check whether a value is NULL
before making the assignment:

Visual Basic Example

If Not myReader.IsDBNull(myReader.GetOrdinal("mytime")) Then
 myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"))
Else
 myTime = DateTime.MinValue
End If

C# Example

if (! myReader.IsDBNull(myReader.GetOrdinal("mytime")))
 myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"));
else
 myTime = DateTime.MinValue;

NULL values will work in a data set and can be bound to form controls without special handling.

6.13. Using the MySqlBulkLoader Class

http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html

Using the MySqlBulkLoader Class

109

MySQL Connector/Net features a bulk loader class that wraps the MySQL statement LOAD DATA
INFILE. This gives MySQL Connector/Net the ability to load a data file from a local or remote host
to the server. The class concerned is MySqlBulkLoader. This class has various methods, the main
one being load to cause the specified file to be loaded to the server. Various parameters can be set to
control how the data file is processed. This is achieved through setting various properties of the class.
For example, the field separator used, such as comma or tab, can be specified, along with the record
terminator, such as newline.

The following code shows a simple example of using the MySqlBulkLoader class. First an empty
table needs to be created, in this case in the test database:

CREATE TABLE Career (
 Name VARCHAR(100) NOT NULL,
 Age INTEGER,
 Profession VARCHAR(200)
);

A simple tab-delimited data file is also created (it could use any other field delimiter such as comma):

Table Career in Test Database
Name Age Profession
Tony 47 Technical Writer
Ana 43 Nurse
Fred 21 IT Specialist
Simon 45 Hairy Biker

Note that with this test file the first three lines will need to be ignored, as they do not contain table data.
This can be achieved using the NumberOfLinesToSkip property. This file can then be loaded and
used to populate the Career table in the test database:

using System;
using System.Text;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 string connStr = "server=localhost;user=root;database=test;port=3306;password=******;";
 MySqlConnection conn = new MySqlConnection(connStr);
 MySqlBulkLoader bl = new MySqlBulkLoader(conn);
 bl.TableName = "Career";
 bl.FieldTerminator = "\t";
 bl.LineTerminator = "\n";
 bl.FileName = "c:/career_data.txt";
 bl.NumberOfLinesToSkip = 3;
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 // Upload data from file
 int count = bl.Load();
 Console.WriteLine(count + " lines uploaded.");
 string sql = "SELECT Name, Age, Profession FROM Career";
 MySqlCommand cmd = new MySqlCommand(sql, conn);
 MySqlDataReader rdr = cmd.ExecuteReader();
 while (rdr.Read())
 {
 Console.WriteLine(rdr[0] + " -- " + rdr[1] + " -- " + rdr[2]);
 }
 rdr.Close();
 conn.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html

Using the MySQL Connector/Net Trace Source Object

110

 Console.WriteLine("Done.");
 }
 }
}

Further information on LOAD DATA INFILE can be found in LOAD DATA INFILE Syntax. Further
information on MySqlBulkLoader can be found in the reference documentation that was included
with your connector.

6.14. Using the MySQL Connector/Net Trace Source Object
MySQL Connector/Net 6.2 introduced support for .NET 2.0 compatible tracing, using TraceSource
objects.

The .NET 2.0 tracing architecture consists of four main parts:

• Source - This is the originator of the trace information. The source is used to send trace messages.
The name of the source provided by MySQL Connector/Net is mysql.

• Switch - This defines the level of trace information to emit. Typically, this is specified in the
app.config file, so that it is not necessary to recompile an application to change the trace level.

• Listener - Trace listeners define where the trace information will be written to. Supported listeners
include, for example, the Visual Studio Output window, the Windows Event Log, and the console.

• Filter - Filters can be attached to listeners. Filters determine the level of trace information that will be
written. While a switch defines the level of information that will be written to all listeners, a filter can
be applied on a per-listener basis, giving finer grained control of trace information.

To use tracing a TraceSource object first needs to be created. To create a TraceSource object in
MySQL Connector/Net you would use code similar to the following:

TraceSource ts = new TraceSource("mysql");

To enable trace messages, configure a trace switch. There are three main switch classes,
BooleanSwitch, SourceSwitch, and TraceSwitch. Trace switches also have associated with
them a trace level enumeration, these are Off, Error, Warning, Info, and Verbose. The following
code snippet illustrates creating a switch:

ts.Switch = new SourceSwitch("MySwitch", "Verbose");

This creates a SourceSwitch, called MySwitch, and sets the trace level to Verbose, meaning that
all trace messages will be written.

It is convenient to be able to change the trace level without having to recompile the code. This is
achieved by specifying the trace level in application configuration file, app.config. You then simply
need to specify the desired trace level in the configuration file and restart the application. The trace
source is configured within the system.diagnostics section of the file. The following XML snippet
illustrates this:

<configuration>
 ...
 <system.diagnostics>
 <sources>
 <source name="mysql" switchName="MySwitch"
 switchType="System.Diagnostics.SourceSwitch" />
 ...
 </sources>
 <switches>
 <add name="MySwitch" value="Verbose"/>
 ...
 </switches>
 </system.diagnostics>
 ...

http://dev.mysql.com/doc/refman/5.5/en/load-data.html

Viewing MySQL Trace Information

111

</configuration>

By default, trace information is written to the Output window of Microsoft Visual Studio. There are a
wide range of listeners that can be attached to the trace source, so that trace messages can be written
out to various destinations. You can also create custom listeners to allow trace messages to be written
to other destinations as mobile devices and web services. A commonly used example of a listener is
ConsoleTraceListener, which writes trace messages to the console.

To add a listener at run time, use code such as the following:

ts.Listeners.Add(new ConsoleTraceListener());

Then, call methods on the trace source object to generate trace information. For example, the
TraceInformation(), TraceEvent(), or TraceData() methods can be used.

The TraceInformation() method simply prints a string passed as a parameter. The
TraceEvent() method, as well as the optional informational string, requires a TraceEventType
value to be passed to indicate the trace message type, and also an application specific ID. The
TraceEventType can have a value of Verbose, Information, Warning, Error, and Critical.
Using the TraceData() method you can pass any object, for example an exception object, instead of
a message.

To ensure than these generated trace messages gets flushed from the trace source buffers to listeners,
invoke the Flush() method. When you are finished using a trace source, call the Close() method.
The Close() method first calls Flush(), to ensure any remaining data is written out. It then frees up
resources, and closes the listeners associated with the trace source.

ts.TraceInformation("Informational message");
ts.TraceEvent(TraceEventType.Error, 3, "Optional error message");
ts.TraceData(TraceEventType.Error, 3, ex); // pass exception object
ts.Flush();
...
ts.Close();

6.14.1. Viewing MySQL Trace Information

This section describes how to set up your application to view MySQL trace information.

The first thing you need to do is create a suitable app.config file for your application. An example is
shown in the following code:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="mysql" switchName="SourceSwitch"
 switchType="System.Diagnostics.SourceSwitch" >
 <listeners>
 <add name="console" />
 <remove name ="Default" />
 </listeners>
 </source>
 </sources>
 <switches>

 <add name="SourceSwitch" value="Verbose" />

 </switches>
 <sharedListeners>
 <add name="console"
 type="System.Diagnostics.ConsoleTraceListener"
 initializeData="false"/>
 </sharedListeners>
 </system.diagnostics>

Viewing MySQL Trace Information

112

</configuration>

This ensures a suitable trace source is created, along with a switch. The switch level in this case is set
to Verbose to display the maximum amount of information.

In the application the only other step required is to add logging=true to the connection string. An
example application could be:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
using MySql.Data;
using MySql.Data.MySqlClient;
using MySql.Web;
namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******;logging=true;";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent='Oceania'";
 MySqlCommand cmd = new MySqlCommand(sql, conn);
 MySqlDataReader rdr = cmd.ExecuteReader();
 while (rdr.Read())
 {
 Console.WriteLine(rdr[0] + " -- " + rdr[1]);
 }
 rdr.Close();
 conn.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 Console.WriteLine("Done.");
 }
 }
}

This simple application will then generate the following output:

Connecting to MySQL...
mysql Information: 1 : 1: Connection Opened: connection string = 'server=localhost;User Id=root;database=world;port=3306
;password=******;logging=True'
mysql Information: 3 : 1: Query Opened: SHOW VARIABLES
mysql Information: 4 : 1: Resultset Opened: field(s) = 2, affected rows = -1, inserted id = -1
mysql Information: 5 : 1: Resultset Closed. Total rows=272, skipped rows=0, size (bytes)=7058
mysql Information: 6 : 1: Query Closed
mysql Information: 3 : 1: Query Opened: SHOW COLLATION
mysql Information: 4 : 1: Resultset Opened: field(s) = 6, affected rows = -1, inserted id = -1
mysql Information: 5 : 1: Resultset Closed. Total rows=127, skipped rows=0, size (bytes)=4102
mysql Information: 6 : 1: Query Closed
mysql Information: 3 : 1: Query Opened: SET character_set_results=NULL
mysql Information: 4 : 1: Resultset Opened: field(s) = 0, affected rows = 0, inserted id = 0
mysql Information: 5 : 1: Resultset Closed. Total rows=0, skipped rows=0, size (bytes)=0
mysql Information: 6 : 1: Query Closed
mysql Information: 10 : 1: Set Database: world
mysql Information: 3 : 1: Query Opened: SELECT Name, HeadOfState FROM Country WHERE Continent='Oceania'
mysql Information: 4 : 1: Resultset Opened: field(s) = 2, affected rows = -1, inserted id = -1
American Samoa -- George W. Bush
Australia -- Elisabeth II
...
Wallis and Futuna -- Jacques Chirac

Building Custom Listeners

113

Vanuatu -- John Bani
United States Minor Outlying Islands -- George W. Bush
mysql Information: 5 : 1: Resultset Closed. Total rows=28, skipped rows=0, size (bytes)=788
mysql Information: 6 : 1: Query Closed
Done.
mysql Information: 2 : 1: Connection Closed

The first number displayed in the trace message corresponds to the MySQL event type:

Event Description

1 ConnectionOpened: connection string

2 ConnectionClosed:

3 QueryOpened: mysql server thread id, query text

4 ResultOpened: field count, affected rows (-1 if select), inserted
id (-1 if select)

5 ResultClosed: total rows read, rows skipped, size of resultset in
bytes

6 QueryClosed:

7 StatementPrepared: prepared sql, statement id

8 StatementExecuted: statement id, mysql server thread id

9 StatementClosed: statement id

10 NonQuery: [varies]

11 UsageAdvisorWarning: usage advisor flag. NoIndex = 1,
BadIndex = 2, SkippedRows = 3, SkippedColumns = 4,
FieldConversion = 5.

12 Warning: level, code, message

13 Error: error number, error message

The second number displayed in the trace message is the connection count.

Although this example uses the ConsoleTraceListener, any of the other standard listeners could
have been used. Another possibility is to create a custom listener that uses the information passed
using the TraceEvent method. For example, a custom trace listener could be created to perform
active monitoring of the MySQL event messages, rather than simply writing these to an output device.

It is also possible to add listeners to the MySQL Trace Source at run time. This can be done with the
following code:

MySqlTrace.Listeners.Add(new ConsoleTraceListener());

MySQL Connector/Net 6.3.2 introduced the ability to switch tracing on and off at run time. This
can be achieved using the calls MySqlTrace.EnableQueryAnalyzer(string host, int
postInterval) and MySqlTrace.DisableQueryAnalyzer(). The parameter host is the URL of
the MySQL Enterprise Monitor server to monitor. The parameter postInterval is how often to post
the data to MySQL Enterprise Monitor, in seconds.

6.14.2. Building Custom Listeners

To build custom listeners that work with the MySQL Connector/Net Trace Source, it is necessary to
understand the key methods used, and the event data formats used.

The main method involved in passing trace messages is the TraceSource.TraceEvent method.
This has the prototype:

public void TraceEvent(
 TraceEventType eventType,
 int id,

Building Custom Listeners

114

 string format,
 params Object[] args
)

This trace source method will process the list of attached listeners and call the listener's
TraceListener.TraceEvent method. The prototype for the TraceListener.TraceEvent
method is as follows:

public virtual void TraceEvent(
 TraceEventCache eventCache,
 string source,
 TraceEventType eventType,
 int id,
 string format,
 params Object[] args
)

The first three parameters are used in the standard as defined by Microsoft. The last three parameters
contain MySQL-specific trace information. Each of these parameters is now discussed in more detail.

int id

This is a MySQL-specific identifier. It identifies the MySQL event type that has occurred, resulting in a
trace message being generated. This value is defined by the MySqlTraceEventType public enum
contained in the MySQL Connector/Net code:

public enum MySqlTraceEventType : int
{
 ConnectionOpened = 1,
 ConnectionClosed,
 QueryOpened,
 ResultOpened,
 ResultClosed,
 QueryClosed,
 StatementPrepared,
 StatementExecuted,
 StatementClosed,
 NonQuery,
 UsageAdvisorWarning,
 Warning,
 Error
}

The MySQL event type also determines the contents passed using the parameter params Object[]
args. The nature of the args parameters are described in further detail in the following material.

string format

This is the format string that contains zero or more format items, which correspond to objects in the
args array. This would be used by a listener such as ConsoleTraceListener to write a message to
the output device.

params Object[] args

This is a list of objects that depends on the MySQL event type, id. However, the first parameter
passed using this list is always the driver id. The driver id is a unique number that is incremented each
time the connector is opened. This enables groups of queries on the same connection to be identified.
The parameters that follow driver id depend on the MySQL event id, and are as follows:

MySQL-specific event type Arguments (params Object[] args)

ConnectionOpened Connection string

ConnectionClosed No additional parameters

QueryOpened mysql server thread id, query text

ResultOpened field count, affected rows (-1 if select), inserted id (-1 if select)

http://msdn.microsoft.com/en-us/library/d193webf.aspx

Binary/Nonbinary Issues

115

MySQL-specific event type Arguments (params Object[] args)

ResultClosed total rows read, rows skipped, size of resultset in bytes

QueryClosed No additional parameters

StatementPrepared prepared sql, statement id

StatementExecuted statement id, mysql server thread id

StatementClosed statement id

NonQuery Varies

UsageAdvisorWarning usage advisor flag. NoIndex = 1, BadIndex = 2, SkippedRows =
3, SkippedColumns = 4, FieldConversion = 5.

Warning level, code, message

Error error number, error message

This information will allow you to create custom trace listeners that can actively monitor the MySQL-
specific events.

6.15. Binary/Nonbinary Issues
There are certain situations where MySQL will return incorrect metadata about one or more columns.
More specifically, the server will sometimes report that a column is binary when it is not and vice versa.
In these situations, it becomes practically impossible for the connector to be able to correctly identify
the correct metadata.

Some examples of situations that may return incorrect metadata are:

• Execution of SHOW PROCESSLIST. Some of the columns will be returned as binary even though they
only hold string data.

• When a temporary table is used to process a resultset, some columns may be returned with incorrect
binary flags.

• Some server functions such DATE_FORMAT will incorrectly return the column as binary.

With the availability of BINARY and VARBINARY data types, it is important that we respect the
metadata returned by the server. However, we are aware that some existing applications may break
with this change, so we are creating a connection string option to enable or disable it. By default,
Connector/Net 5.1 respects the binary flags returned by the server. You might need to make small
changes to your application to accommodate this change.

In the event that the changes required to your application would be too large, adding 'respect
binary flags=false' to your connection string causes the connector to use the prior behavior: any
column that is marked as string, regardless of binary flags, will be returned as string. Only columns that
are specifically marked as a BLOB will be returned as BLOB.

6.16. Character Set Considerations for Connector/Net
Treating Binary Blobs As UTF8

MySQL doesn't currently support 4-byte UTF8 sequences. This makes it difficult to represent some
multi-byte languages such as Japanese. To try and alleviate this, Connector/Net now supports a mode
where binary blobs can be treated as strings.

To do this, you set the 'Treat Blobs As UTF8' connection string keyword to yes. This is
all that needs to be done to enable conversion of all binary blobs to UTF8 strings. To convert
only some of your BLOB columns, you can make use of the 'BlobAsUTF8IncludePattern'
and'BlobAsUTF8ExcludePattern' keywords. Set these to a regular expression pattern that
matches the column names to include or exclude respectively.

http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html

Using Connector/Net with Crystal Reports

116

When the regular expression patterns both match a single column, the include pattern is applied before
the exclude pattern. The result, in this case, would be that the column would be excluded. Also, be
aware that this mode does not apply to columns of type BINARY or VARBINARY and also do not apply
to nonbinary BLOB columns.

Currently, this mode only applies to reading strings out of MySQL. To insert 4-byte UTF8 strings into
blob columns, use the .NET Encoding.GetBytes function to convert your string to a series of bytes.
You can then set this byte array as a parameter for a BLOB column.

6.17. Using Connector/Net with Crystal Reports
Crystal Reports is a common tool used by Windows application developers to perform reporting and
document generation. In this section we will show how to use Crystal Reports XI with MySQL and
Connector/Net.

6.17.1. Creating a Data Source

When creating a report in Crystal Reports there are two options for accessing the MySQL data while
designing your report.

The first option is to use Connector/ODBC as an ADO data source when designing your report. You will
be able to browse your database and choose tables and fields using drag and drop to build your report.
The disadvantage of this approach is that additional work must be performed within your application to
produce a data set that matches the one expected by your report.

The second option is to create a data set in VB.NET and save it as XML. This XML file can then be
used to design a report. This works quite well when displaying the report in your application, but is less
versatile at design time because you must choose all relevant columns when creating the data set. If
you forget a column you must re-create the data set before the column can be added to the report.

The following code can be used to create a data set from a query and write it to disk:

Visual Basic Example

Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter
conn.ConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=world"
Try
 conn.Open()
 cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _
 & "country.name, country.population, country.continent " _
 & "FROM country, city ORDER BY country.continent, country.name"
 cmd.Connection = conn
 myAdapter.SelectCommand = cmd
 myAdapter.Fill(myData)
 myData.WriteXml("C:\dataset.xml", XmlWriteMode.WriteSchema)
Catch ex As Exception
 MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();
conn.ConnectionString = "server=127.0.0.1;uid=root;" +

Creating the Report

117

 "pwd=12345;database=test;";
try
{
 cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
 "country.name, country.population, country.continent " +
 "FROM country, city ORDER BY country.continent, country.name";
 cmd.Connection = conn;
 myAdapter.SelectCommand = cmd;
 myAdapter.Fill(myData);
 myData.WriteXml(@"C:\dataset.xml", XmlWriteMode.WriteSchema);
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show(ex.Message, "Report could not be created",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
}

The resulting XML file can be used as an ADO.NET XML datasource when designing your report.

If you choose to design your reports using Connector/ODBC, it can be downloaded from
dev.mysql.com.

6.17.2. Creating the Report

For most purposes, the Standard Report wizard helps with the initial creation of a report. To start the
wizard, open Crystal Reports and choose the New > Standard Report option from the File menu.

The wizard first prompts you for a data source. If you use Connector/ODBC as your data source,
use the OLEDB provider for ODBC option from the OLE DB (ADO) tree instead of the ODBC (RDO)
tree when choosing a data source. If using a saved data set, choose the ADO.NET (XML) option and
browse to your saved data set.

The remainder of the report creation process is done automatically by the wizard.

After the report is created, choose the Report Options... entry of the File menu. Un-check the Save
Data With Report option. This prevents saved data from interfering with the loading of data within our
application.

6.17.3. Displaying the Report

To display a report we first populate a data set with the data needed for the report, then load the report
and bind it to the data set. Finally we pass the report to the crViewer control for display to the user.

The following references are needed in a project that displays a report:

• CrystalDecisions.CrystalReports.Engine

• CrystalDecisions.ReportSource

• CrystalDecisions.Shared

• CrystalDecisions.Windows.Forms

The following code assumes that you created your report using a data set saved using the code
shown in Section 6.17.1, “Creating a Data Source”, and have a crViewer control on your form named
myViewer.

Visual Basic Example

Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient
Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection

http://dev.mysql.com/downloads/connector/odbc/3.51.html

Displaying the Report

118

Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter
conn.ConnectionString = _
 "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test"
Try
 conn.Open()
 cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _
 & "country.name, country.population, country.continent " _
 & "FROM country, city ORDER BY country.continent, country.name"
 cmd.Connection = conn
 myAdapter.SelectCommand = cmd
 myAdapter.Fill(myData)
 myReport.Load(".\world_report.rpt")
 myReport.SetDataSource(myData)
 myViewer.ReportSource = myReport
Catch ex As Exception
 MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;
ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test;";
try
{
 cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
 "country.name, country.population, country.continent " +
 "FROM country, city ORDER BY country.continent, country.name";
 cmd.Connection = conn;
 myAdapter.SelectCommand = cmd;
 myAdapter.Fill(myData);
 myReport.Load(@".\world_report.rpt");
 myReport.SetDataSource(myData);
 myViewer.ReportSource = myReport;
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show(ex.Message, "Report could not be created",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
}

A new data set it generated using the same query used to generate the previously saved data set.
Once the data set is filled, a ReportDocument is used to load the report file and bind it to the data set.
The ReportDocument is the passed as the ReportSource of the crViewer.

This same approach is taken when a report is created from a single table using Connector/ODBC. The
data set replaces the table used in the report and the report is displayed properly.

When a report is created from multiple tables using Connector/ODBC, a data set with multiple tables
must be created in our application. This enables each table in the report data source to be replaced
with a report in the data set.

We populate a data set with multiple tables by providing multiple SELECT statements in our
MySqlCommand object. These SELECT statements are based on the SQL query shown in Crystal
Reports in the Database menu's Show SQL Query option. Assume the following query:

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/select.html

Displaying the Report

119

SELECT `country`.`Name`, `country`.`Continent`, `country`.`Population`, `city`.`Name`, `city`.`Population`
FROM `world`.`country` `country` LEFT OUTER JOIN `world`.`city` `city` ON `country`.`Code`=`city`.`CountryCode`
ORDER BY `country`.`Continent`, `country`.`Name`, `city`.`Name`

This query is converted to two SELECT queries and displayed with the following code:

Visual Basic Example

Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient
Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter
conn.ConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=world"
Try
 conn.Open()
 cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER BY countrycode, name; " _
 & "SELECT name, population, code, continent FROM country ORDER BY continent, name"
 cmd.Connection = conn
 myAdapter.SelectCommand = cmd
 myAdapter.Fill(myData)
 myReport.Load(".\world_report.rpt")
 myReport.Database.Tables(0).SetDataSource(myData.Tables(0))
 myReport.Database.Tables(1).SetDataSource(myData.Tables(1))
 myViewer.ReportSource = myReport
Catch ex As Exception
 MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;
ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test;";
try
{
 cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER " +
 "BY countrycode, name; SELECT name, population, code, continent FROM " +
 "country ORDER BY continent, name";
 cmd.Connection = conn;
 myAdapter.SelectCommand = cmd;
 myAdapter.Fill(myData);
 myReport.Load(@".\world_report.rpt");
 myReport.Database.Tables(0).SetDataSource(myData.Tables(0));
 myReport.Database.Tables(1).SetDataSource(myData.Tables(1));
 myViewer.ReportSource = myReport;
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show(ex.Message, "Report could not be created",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
}

It is important to order the SELECT queries in alphabetic order, as this is the order the report will expect
its source tables to be in. One SetDataSource statement is needed for each table in the report.

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/select.html

ASP.NET Provider Model

120

This approach can cause performance problems because Crystal Reports must bind the tables
together on the client-side, which will be slower than using a pre-saved data set.

6.18. ASP.NET Provider Model

MySQL Connector/Net provides support for the ASP.NET 2.0 provider model. This model enables
application developers to focus on the business logic of their application instead of having to recreate
such boilerplate items as membership and roles support.

MySQL Connector/Net supplies the following providers:

• Membership Provider

• Role Provider

• Profile Provider

• Session State Provider (MySQL Connector/Net 6.1 and later)

The following tables show the supported providers, their default provider and the corresponding
MySQL provider.

Membership Provider

Default Provider MySQL Provider

System.Web.Security.SqlMembershipProvider MySql.Web.Security.MySQLMembershipProvider

Role Provider

Default Provider MySQL Provider

System.Web.Security.SqlRoleProvider MySql.Web.Security.MySQLRoleProvider

Profile Provider

Default Provider MySQL Provider

System.Web.Profile.SqlProfileProvider MySql.Web.Profile.MySQLProfileProvider

SessionState Provider

Default Provider MySQL Provider

System.Web.SessionState.InProcSessionStateStoreMySql.Web.SessionState.MySqlSessionStateStore

Note

The MySQL Session State provider uses slightly different capitalization on the
class name compared to the other MySQL providers.

Installing The Providers

The installation of Connector/Net 5.1 or later will install the providers and register them in your
machine's .NET configuration file, machine.config. The additional entries created will result in the
system.web section appearing similar to the following code:

<system.web>
 <processModel autoConfig="true" />
 <httpHandlers />
 <membership>
 <providers>
 <add name="AspNetSqlMembershipProvider" type="System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" connectionStringName="LocalSqlServer" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="true" applicationName="/" requiresUniqueEmail="false" passwordFormat="Hashed" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="7" minRequiredNonalphanumericCharacters="1" passwordAttemptWindow="10" passwordStrengthRegularExpression="" />

ASP.NET Provider Model

121

 <add name="MySQLMembershipProvider" type="MySql.Web.Security.MySQLMembershipProvider, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="true" applicationName="/" requiresUniqueEmail="false" passwordFormat="Clear" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="7" minRequiredNonalphanumericCharacters="1" passwordAttemptWindow="10" passwordStrengthRegularExpression="" />
 </providers>
 </membership>
 <profile>
 <providers>
 <add name="AspNetSqlProfileProvider" connectionStringName="LocalSqlServer" applicationName="/" type="System.Web.Profile.SqlProfileProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 <add name="MySQLProfileProvider" type="MySql.Web.Profile.MySQLProfileProvider, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" applicationName="/" />
 </providers>
 </profile>
 <roleManager>
 <providers>
 <add name="AspNetSqlRoleProvider" connectionStringName="LocalSqlServer" applicationName="/" type="System.Web.Security.SqlRoleProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 <add name="AspNetWindowsTokenRoleProvider" applicationName="/" type="System.Web.Security.WindowsTokenRoleProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 <add name="MySQLRoleProvider" type="MySql.Web.Security.MySQLRoleProvider, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" applicationName="/" />
 </providers>
 </roleManager>
</system.web>

Each provider type can have multiple provider implementations. The default provider can also be
set here using the defaultProvider attribute, but usually this is set in the web.config file either
manually or by using the ASP.NET configuration tool.

At time of writing, the MySqlSessionStateStore is not added to machine.config at install time,
and so add the following:

<sessionState>
 <providers>
 <add name="MySqlSessionStateStore" type="MySql.Web.SessionState.MySqlSessionStateStore, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" applicationName="/" />
 </providers>
</sessionState>

The SessionState Provider uses the customProvider attribute, rather than defaultProvider, to
set the provider as the default. A typical web.config file might contain:

 <system.web>
 <membership defaultProvider="MySQLMembershipProvider" />
 <roleManager defaultProvider="MySQLRoleProvider" />
 <profile defaultProvider="MySQLProfileProvider" />
 <sessionState customProvider="MySqlSessionStateStore" />
 <compilation debug="false">
 ...

This sets the MySQL Providers as the defaults to be used in this web application.

The providers are implemented in the file mysql.web.dll and this file can be found in your MySQL
Connector/Net installation folder. There is no need to run any type of SQL script to set up the database
schema, as the providers create and maintain the proper schema automatically.

Using The Providers

The easiest way to start using the providers is to use the ASP.NET configuration tool that is available
on the Solution Explorer toolbar when you have a website project loaded.

In the web pages that open, you can select the MySQL membership and roles providers by picking a
custom provider for each area.

When the provider is installed, it creates a dummy connection string named LocalMySqlServer.
Although this has to be done so that the provider will work in the ASP.NET configuration tool, you
override this connection string in your web.config file. You do this by first removing the dummy
connection string and then adding in the proper one, as shown in the following example:

<connectionStrings>
 <remove name="LocalMySqlServer"/>
 <add name="LocalMySqlServer" connectionString="server=xxx;uid=xxx;pwd=xxx;database=xxx;"/>
</connectionStrings>

Note the database to connect to must be specified.

Working with Partial Trust / Medium Trust

122

Rather than manually editing configuration files, consider using the MySQL Website Configuration tool
to configure your desired provider setup. From MySQL Connector/Net 6.1.1 onwards, all providers
can be selected and configured from this wizard. The tool modifies your website.config file to the
desired configuration. A tutorial on doing this is available in the following section Section 4.12, “MySQL
Website Configuration Tool”.

A tutorial demonstrating how to use the Membership and Role Providers can be found in the following
section Section 5.2, “Tutorial: MySQL Connector/Net ASP.NET Membership and Role Provider”.

Deployment

To use the providers on a production server, distribute the MySql.Data and the MySql.Web
assemblies, and either register them in the remote systems Global Assembly Cache or keep them in
your application's bin/ directory.

6.19. Working with Partial Trust / Medium Trust

.NET applications operate under a given trust level. Normal desktop applications operate under full
trust, while web applications that are hosted in shared environments are normally run under the partial
trust level (also known as “medium trust”). Some hosting providers host shared applications in their
own app pools and allow the application to run under full trust, but this configuration is relatively rare.
The Connector/Net support for partial trust has improved over time to simplify the configuration and
deployment process for hosting providers.

6.19.1. Evolution of Partial Trust Support Across Connector/Net Versions

The partial trust support for Connector/Net has improved rapidly throughout the 6.5.x and 6.6.x
versions. The latest enhancements do require some configuration changes in existing deployments.
Here is a summary of the changes for each version.

6.6.4 and Above: Library Can Be Inside or Outside GAC

Now you can install the MySql.Data.dll library in the Global Assembly Cache (GAC) as explained
in Section 6.19.2, “Configuring Partial Trust with Connector/Net Library Installed in GAC”, or in a bin or
lib folder inside the project or solution as explained in Section 6.19.3, “Configuring Partial Trust with
Connector/Net Library Not Installed in GAC”. If the library is not in the GAC, the only protocol supported
is TCP/IP.

6.5.1 and Above: Partial Trust Requires Library in the GAC

Connector/Net 6.5 fully enables our provider to run in a partial trust environment when the library is
installed in the Global Assembly Cache (GAC). The new MySqlClientPermission class, derived
from the .NET DBDataPermission class, helps to simplify the permission setup.

5.0.8 / 5.1.3 and Above: Partial Trust Requires Socket Permissions

Starting with these versions, Connector/Net can be used under partial trust hosting that has been
modified to allow the use of sockets for communication. By default, partial trust does not include
SocketPermission. Connector/Net uses sockets to talk with the MySQL server, so the hosting
provider must create a new trust level that is an exact clone of partial trust but that has the following
permissions added:

• System.Net.SocketPermission

• System.Security.Permissions.ReflectionPermission

• System.Net.DnsPermission

• System.Security.Permissions.SecurityPermission

Configuring Partial Trust with Connector/Net Library Installed in GAC

123

Prior to 5.0.8 / 5.1.3: Partial Trust Not Supported

Connector/Net versions prior to 5.0.8 and 5.1.3 were not compatible with partial trust hosting.

6.19.2. Configuring Partial Trust with Connector/Net Library Installed in
GAC

If the library is installed in the GAC, you must include the connection option
includesecurityasserts=true in your connection string. This is a new requirement as of
Connector/Net 6.6.4.

The following list shows steps and code fragments needed to run a Connector/Net application in
a partial trust environment. For illustration purposes, we use the Pipe Connections protocol in this
example.

1. Install Connector/Net: version 6.6.1 or higher, or 6.5.4 or higher.

2. After installing the library, make the following configuration changes:

In the SecurityClasses section, add a definition for the MySqlClientPermission class,
including the version to use.

<configuration>
 <mscorlib>
 <security>
 <policy>
 <PolicyLevel version="1">
 <SecurityClasses>

 <SecurityClass Name="MySqlClientPermission" Description="MySql.Data.MySqlClient.MySqlClientPermission, MySql.Data, Version=6.6.4.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" />

Scroll down to the ASP.Net section:

<PermissionSet class="NamedPermissionSet" version="1" Name="ASP.Net">

Add a new entry for the detailed configuration of the MySqlClientPermission class:

<IPermission class="MySqlClientPermission" version="1" Unrestricted="true"/>

Note: This configuration is the most generalized way that includes all keywords.

3. Configure the MySQL server to accept pipe connections, by adding the --enable-named-pipe
option on the command line. If you need more information about this, see Installing MySQL on
Microsoft Windows.

4. Confirm that the hosting provider has installed the Connector/Net library (MySql.Data.dll) in the
GAC.

5. Optionally, the hosting provider can avoid granting permissions globally by using
the new MySqlClientPermission class in the trust policies. (The alternative
is to globally enable the permissions System.Net.SocketPermission,
System.Security.Permissions.ReflectionPermission, System.Net.DnsPermission,
and System.Security.Permissions.SecurityPermission.)

6. Create a simple web application using Visual Studio 2010.

7. Add the reference in your application for the MySql.Data.MySqlClient library.

8. Edit your web.config file so that your application runs using a Medium trust level:

http://dev.mysql.com/doc/refman/5.5/en/windows-installation.html
http://dev.mysql.com/doc/refman/5.5/en/windows-installation.html

Configuring Partial Trust with Connector/Net Library Not Installed in GAC

124

<system.web>
 <trust level="Medium"/>
</system.web>

9. Add the MySql.Data.MySqlClient namespace to your server-code page.

10. Define the connection string, in slightly different ways depending on the Connector/Net version.

Only for 6.6.4 or later: To use the connections inside any web application that will run in
Medium trust, add the new includesecurityasserts option to the connection string.
includesecurityasserts=true that makes the library request the following permissions
when required: SocketPermissions, ReflectionPermissions, DnsPermissions,
SecurityPermissions among others that are not granted in Medium trust levels.

For Connector/Net 6.6.3 or earlier: No special setting for security is needed within the connection
string.

MySqlConnectionStringBuilder myconnString = new MySqlConnectionStringBuilder("server=localhost;User Id=root;database=test;");
myconnString.PipeName = "MySQL55";
myconnString.ConnectionProtocol = MySqlConnectionProtocol.Pipe;
// Following attribute is a new requirement when the library is in the GAC.
// Could also be done by adding includesecurityasserts=true; to the string literal
// in the constructor above.
// Not needed with Connector/Net 6.6.3 and earlier.myconnString.IncludeSecurityAsserts = true;

11. Define the MySqlConnection to use:

MySqlConnection myconn = new MySqlConnection(myconnString.ConnectionString);
myconn.Open();

12. Retrieve some data from your tables:

MySqlCommand cmd = new MySqlCommand("Select * from products", myconn);
MySqlDataAdapter da = new MySqlDataAdapter(cmd);
DataSet1 tds = new DataSet1();
da.Fill(tds, tds.Tables[0].TableName);
GridView1.DataSource = tds;
GridView1.DataBind();
myconn.Close()

13. Run the program. It should execute successfully, without requiring any special code or
encountering any security problems.

6.19.3. Configuring Partial Trust with Connector/Net Library Not Installed in
GAC

When deploying a web application to a Shared Hosted environment, where this environment is
configured to run all their .NET applications under a partial or medium trust level, you might not be able
to install the Connector/Net library in the GAC. Instead, you put a reference to the library in the bin or
lib folder inside the project or solution. In this case, you configure the security in a different way than
when the library is in the GAC.

Connector/Net is commonly used by applications that run in Windows environments where the default
communication for the protocol is used via sockets or by TCP/IP. For this protocol to operate is
necessary have the required socket permissions in the web configuration file as follows:

1. Open the medium trust policy web configuration file, which should be under this folder:

%windir%\Microsoft.NET\Framework\{version}\CONFIG\web_mediumtrust.config

Use Framework64 in the path instead of Framework if you are using a 64-bit installation of the
framework.

2. Locate the SecurityClasses tag:

Configuring Partial Trust with Connector/Net Library Not Installed in GAC

125

<SecurityClass Name="SocketPermission"
Description="System.Net.SocketPermission, System, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"/>

3. Scroll down and look for the following PermissionSet:

<PermissionSet version="1" Name="ASP.Net">

4. Add the following inside this PermissionSet:

<IPermission class="SocketPermission" version="1" Unrestricted="true" />

This configuration lets you use the driver with the default Windows protocol TCP/IP without having
any security issues. This approach only supports the TCP/IP protocol, so you cannot use any other
type of connection.

Also, since the MySQLClientPermissions class is not added to the medium trust policy, you
cannot use it. This configuration is the minimum required in order to work with Connector/Net
without the GAC.

126

127

Chapter 7. Connector/Net Connection String Options
Reference

For usage information about connection strings, see Section 6.2, “Creating a Connector/Net
Connection String”. The first table list options that apply generally to all server configurations. The
options related to systems using a connection pool are split into a separate table.

General Options

Table 7.1. Connector/Net Connection String Options - General

Name Default Description

Allow Batch, AllowBatch true When true, multiple SQL statements can be sent with
one command execution. Note: starting with MySQL
4.1.1, batch statements should be separated by the
server-defined separator character. Statements sent to
earlier versions of MySQL should be separated by ';'.

Allow User Variables,
AllowUserVariables

false Setting this to true indicates that the provider expects
user variables in the SQL. This option was added in
Connector/Net version 5.2.2.

Allow Zero Datetime,
AllowZeroDateTime

false If set to True, MySqlDataReader.GetValue()
returns a MySqlDateTime object for date or datetime
columns that have disallowed values, such as zero
datetime values, and a System.DateTime object
for valid values. If set to False (the default setting) it
causes a System.DateTime object to be returned
for all valid values and an exception to be thrown for
disallowed values, such as zero datetime values.

Auto Enlist, AutoEnlist true If AutoEnlist is set to true, which is the default,
a connection opened using TransactionScope
participates in this scope, it commits when the scope
commits and rolls back if TransactionScope does
not commit. However, this feature is considered
security sensitive and therefore cannot be used in a
medium trust environment.

BlobAsUTF8ExcludePattern null A POSIX-style regular expression that matches the
names of BLOB columns that do not contain UTF-8
character data. See Section 6.16, “Character Set
Considerations for Connector/Net” for usage details.

BlobAsUTF8IncludePattern null A POSIX-style regular expression that matches the
names of BLOB columns containing UTF-8 character
data. See Section 6.16, “Character Set Considerations
for Connector/Net” for usage details.

Certificate File,
CertificateFile

null This option specifies the path to a certificate file in
PKCS #12 format (.pfx). For an example of usage,
see Section 5.7, “Tutorial: Using SSL with MySQL
Connector/Net”. Was introduced with 6.2.1.

Certificate Password,
CertificatePassword

null Specifies a password that is used in conjunction
with a certificate specified using the option
CertificateFile. For an example of usage,
see Section 5.7, “Tutorial: Using SSL with MySQL
Connector/Net”. Was introduced with 6.2.1.

General Options

128

Name Default Description

Certificate
Store Location,
CertificateStoreLocation

null Enables you to access a certificate held in a
personal store, rather than use a certificate file and
password combination. For an example of usage,
see Section 5.7, “Tutorial: Using SSL with MySQL
Connector/Net”. Was introduced with 6.2.1.

Certificate Thumbprint,
CertificateThumbprint

null Specifies a certificate thumbprint to ensure correct
identification of a certificate contained within a personal
store. For an example of usage, see Section 5.7,
“Tutorial: Using SSL with MySQL Connector/Net”. Was
introduced with 6.2.1.

CharSet, Character Set,
CharacterSet

 Specifies the character set that should be used to
encode all queries sent to the server. Resultsets are
still returned in the character set of the result data.

Check Parameters,
CheckParameters

true Indicates if stored routine parameters should be
checked against the server.

Command Interceptors,
CommandInterceptors

 The list of interceptors that can intercept SQL
command operations.

Connect Timeout,
Connection Timeout,
ConnectionTimeout

15 The length of time (in seconds) to wait for a connection
to the server before terminating the attempt and
generating an error.

Convert Zero Datetime,
ConvertZeroDateTime

false True to have MySqlDataReader.GetValue()
and MySqlDataReader.GetDateTime() return
DateTime.MinValue for date or datetime columns
that have disallowed values.

Default Command Timeout,
DefaultCommandTimeout

30 Sets the default value of the command timeout to be
used. This does not supercede the individual command
timeout property on an individual command object.
If you set the command timeout property, that will be
used. This option was added in Connector/Net 5.1.4

Default Table Cache Age,
DefaultTableCacheAge

60 Specifies how long a TableDirect result should be
cached, in seconds. For usage information about table
caching, see Section 6.7, “Using Connector/Net with
Table Caching”. This option was added in Connector/
Net 6.4.

enableSessionExpireCallbackfalse When set to true, causes the session-expiry scanner
to raise the session_end event before deleting the
session data stored in the my_aspnet_sessions
table, when a session times out. Enable this option to
write additional application-specific cleanup code to
handle the session_end event of the global.asax
class, before the stored data of the session gets
deleted. Within the session_end method, any other
required cleanup can be done. This option was
added in Connector/Net 6.4.5; it is not yet available in
Connector/Net 6.5.x releases.

Encrypt, UseSSL false For Connector/Net 5.0.3 and later, when true, SSL
encryption is used for all data sent between the client
and server if the server has a certificate installed.
Recognized values are true, false, yes, and no. In
versions before 5.0.3, this option had no effect. From
version 6.2.1, this option is deprecated and is replaced
by SSL Mode. The option still works if used. If this

General Options

129

Name Default Description
option is set to true, it is equivalent to SSL Mode =
Preferred.

Exception Interceptors,
ExceptionInterceptors

 The list of interceptors that can triage thrown
MySqlException exceptions.

Functions Return String,
FunctionsReturnString

false Causes the connector to return binary/varbinary values
as strings, if they do not have a tablename in the
metadata.

Host, Server, Data Source,
DataSource, Address, Addr,
Network Address

localhost The name or network address of the instance of
MySQL to which to connect. Multiple hosts can be
specified separated by commas. This can be useful
where multiple MySQL servers are configured for
replication and you are not concerned about the precise
server you are connecting to. No attempt is made by
the provider to synchronize writes to the database, so
take care when using this option. In Unix environment
with Mono, this can be a fully qualified path to a MySQL
socket file. With this configuration, the Unix socket is
used instead of the TCP/IP socket. Currently, only a
single socket name can be given, so accessing MySQL
in a replicated environment using Unix sockets is not
currently supported.

Ignore Prepare,
IgnorePrepare

true When true, instructs the provider to ignore any calls to
MySqlCommand.Prepare(). This option is provided
to prevent issues with corruption of the statements
when used with server-side prepared statements. If you
use server-side prepare statements, set this option to
false. This option was added in Connector/Net 5.0.3
and Connector/Net 1.0.9.

includesecurityasserts,
include security asserts

false Must be set to true when using the
MySQLClientPermissions class in a partial trust
environment, with the library installed in the GAC of
the hosting environment. This requirement is new for
partial-trust applications in Connector/Net 6.6.4 and
higher. See Section 6.19, “Working with Partial Trust /
Medium Trust” for details.

Initial Catalog, Database mysql The case-sensitive name of the database to use
initially.

Interactive,
Interactive Session,
InteractiveSession

false If set to true, the client is interactive. An
interactive client is one where the server variable
CLIENT_INTERACTIVE is set. If an interactive client
is set, the wait_timeout variable is set to the value
of interactive_timeout. The client will then time
out after this period of inactivity. For more details, see
Server System Variables in the MySQL Reference
Manual.

Integrated Security,
IntegratedSecurity

no Use Windows authentication when connecting to
server. By default, it is turned off. To enable, specify a
value of yes. (You can also use the value sspi as an
alternative to yes.) For details, see Section 6.5, “Using
the Windows Native Authentication Plugin”. This option
was introduced in Connector/Net 6.4.4.

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html

General Options

130

Name Default Description

Keep Alive, Keepalive 0 For TCP connections, idle connection time measured
in seconds, before the first keepalive packet is sent. A
value of 0 indicates that keepalive is not used.

Logging false When true, various pieces of information is output
to any configured TraceListeners. See Section 6.14,
“Using the MySQL Connector/Net Trace Source Object”
for further details.

Old Guids, OldGuids false This option was introduced in Connector/Net 6.1.1. The
backend representation of a GUID type was changed
from BINARY(16) to CHAR(36). This was done to
allow developers to use the server function UUID()
to populate a GUID table - UUID() generates a 36-
character string. Developers of older applications can
add 'Old Guids=true' to the connection string to
use a GUID of data type BINARY(16).

Old Syntax, OldSyntax, Use
Old Syntax, UseOldSyntax

false This option was deprecated in Connector/Net 5.2.2. All
code should now be written using the '@' symbol as the
parameter marker.

Password, pwd The password for the MySQL account being used.

Persist Security Info,
PersistSecurityInfo

false When set to false or no (strongly recommended),
security-sensitive information, such as the password, is
not returned as part of the connection if the connection
is open or has ever been in an open state. Resetting
the connection string resets all connection string
values, including the password. Recognized values are
true, false, yes, and no.

Pipe Name, Pipe, PipeName mysql When set to the name of a named pipe, the
MySqlConnection attempts to connect to MySQL
on that named pipe. This setting only applies to the
Windows platform.

Port 3306 The port MySQL is using to listen for connections. This
value is ignored if Unix socket is used.

Procedure Cache Size,
ProcedureCacheSize,
procedure cache,
procedurecache

25 Sets the size of the stored procedure cache. By default,
Connector/Net stores the metadata (input/output data
types) about the last 25 stored procedures used. To
disable the stored procedure cache, set the value to
zero (0). This option was added in Connector/Net 5.0.2
and Connector/Net 1.0.9.

Protocol,
Connection Protocol,
ConnectionProtocol

socket Specifies the type of connection to make to the server.
Values can be: socket or tcp for a socket connection,
pipe for a named pipe connection, unix for a Unix
socket connection, memory to use MySQL shared
memory.

Replication false Indicates if this connection is to use replicated servers.

Respect Binary Flags,
RespectBinaryFlags

true Setting this option to false means that Connector/Net
ignores a column's binary flags as set by the server.
This option was added in Connector/Net version 5.1.3.

Shared Memory Name,
SharedMemoryName

MYSQL The name of the shared memory object to use for
communication if the connection protocol is set to
memory.

http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_uuid
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html

General Options

131

Name Default Description

Sql Server Mode,
sqlservermode

false Allow SQL Server syntax. When set to true, enables
Connector/Net to support square brackets around
symbols instead of backticks. This enables Visual
Studio wizards that bracket symbols with [] to work with
Connector/Net. This option incurs a performance hit,
so should only be used if necessary. This option was
added in version 6.3.1.

SSL Mode, SslMode None This option has the following values:

• None - do not use SSL.

• Preferred - use SSL if the server supports it, but
allow connection in all cases.

• Required - Always use SSL. Deny connection if
server does not support SSL.

• VerifyCA - Always use SSL. Validate the CA but
tolerate name mismatch.

• VerifyFull - Always use SSL. Fail if the host name is
not correct.

This option was introduced in MySQL Connector/Net
6.2.1.

Table Cache, tablecache,
tablecaching

false Enables or disables caching of TableDirect
commands. A value of true enables the cache while
false disables it. For usage information about table
caching, see Section 6.7, “Using Connector/Net with
Table Caching”. This option was added in Connector/
Net 6.4.

Treat BLOBs as UTF8,
TreatBlobsAsUTF8

false

Treat Tiny As Boolean,
TreatTinyAsBoolean

true Setting this value to false causes TINYINT(1) to
be treated as an INT. See Numeric Type Overview for
a further explanation of the TINYINT and BOOL data
types.

Use Affected Rows,
UseAffectedRows

false When true, the connection reports changed rows
instead of found rows. This option was added in
Connector/Net version 5.2.6.

Use Procedure Bodies,
UseProcedureBodies,
procedure bodies

true When set to true, the default value, MySQL
Connector/Net expects the body of the procedure
to be viewable. This enables it to determine the
parameter types and order. Set the option to
false when the user connecting to the database
does not have the SELECT privileges for the
mysql.proc (stored procedures) table, or cannot
view INFORMATION_SCHEMA.ROUTINES. In this case,
MySQL Connector/Net cannot determine the types and
order of the parameters, and must be alerted to this fact
by setting this option to false. When set to false,
MySQL Connector/Net does not rely on this information
being available when the procedure is called. Because
MySQL Connector/Net will not be able to determine this
information, explicitly set the types of all the parameters

http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_select
http://dev.mysql.com/doc/refman/5.5/en/routines-table.html

Connection Pooling Options

132

Name Default Description
before the call and add the parameters to the command
in the same order as they appear in the procedure
definition. This option was added in MySQL Connector/
Net 5.0.4 and MySQL Connector/Net 1.0.10.

User Id, UserID, Username,
Uid, User name, User

 The MySQL login account being used.

Compress, Use Compression,
UseCompression

false Setting this option to true enables compression of
packets exchanged between the client and the server.
This exchange is defined by the MySQL client/server
protocol.

Compression is used if both client and server support
ZLIB compression, and the client has requested
compression using this option.

A compressed packet header is: packet length (3
bytes), packet number (1 byte), and Uncompressed
Packet Length (3 bytes). The Uncompressed
Packet Length is the number of bytes in the original,
uncompressed packet. If this is zero, the data in
this packet has not been compressed. When the
compression protocol is in use, either the client or the
server may compress packets. However, compression
will not occur if the compressed length is greater than
the original length. Thus, some packets will contain
compressed data while other packets will not.

Use Usage Advisor, Usage
Advisor, UseUsageAdvisor

false Logs inefficient database operations.

Use Performance Monitor,
UsePerformanceMonitor,
userperfmon, perfmon

false Indicates that performance counters should be updated
during execution.

Connection Pooling Options

The following table lists the valid names for options related to connection pooling within the
ConnectionString. For more information about connection pooling, see Section 6.4, “Using
Connector/Net with Connection Pooling”.

Table 7.2. Connector/Net Connection String Options - Connection Pooling

Name Default Description

Cache Server Properties,
CacheServerProperties

false Specifies whether server variable settings are updated
by a SHOW VARIABLES command each time a pooled
connection is returned. Enabling this setting speeds
up connections in a connection pool environment.
Your application is not informed of any changes to
configuration variables made by other connections.
This option was added in Connector/Net 6.3.

Connection Lifetime,
ConnectionLifeTime

0 When a connection is returned to the pool, its
creation time is compared with the current time,
and the connection is destroyed if that time span (in
seconds) exceeds the value specified by Connection
Lifetime. This is useful in clustered configurations to
force load balancing between a running server and a
server just brought online. A value of zero (0) causes

Connection Pooling Options

133

Name Default Description
pooled connections to have the maximum connection
timeout.

Connection Reset,
ConnectionReset

false If true, the connection state is reset when it is retrieved
from the pool. The default value of false avoids making
an additional server round trip when obtaining a
connection, but the connection state is not reset.

Maximum Pool Size, Max
Pool Size, maximumpoolsize

100 The maximum number of connections allowed in the
pool.

Minimum Pool Size, Min
Pool Size, MinimumPoolSize

0 The minimum number of connections allowed in the
pool.

Pooling true When true, the MySqlConnection object is drawn
from the appropriate pool, or if necessary, is created
and added to the appropriate pool. Recognized values
are true, false, yes, and no.

134

135

Chapter 8. Connector/Net API Reference

Table of Contents
8.1. MySql.Data.MySqlClient Namespace ... 135

8.1.1. MySql.Data.MySqlClientHierarchy ... 136
8.1.2. BaseCommandInterceptor ... 136
8.1.3. BaseExceptionInterceptor ... 137
8.1.4. MySqlCommand Class ... 137
8.1.5. MySqlCommandBuilder Class ... 199
8.1.6. MySqlException Class ... 216
8.1.7. MySqlHelper Class ... 217
8.1.8. MySqlErrorCode Enumeration ... 227

8.2. MySql.Data.Types Namespace ... 228
8.2.1. MySql.Data.TypesHierarchy ... 228
8.2.2. MySqlConversionException Class .. 228
8.2.3. MySqlDateTime Class ... 230

This section of the manual contains a complete reference to the Connector/Net ADO.NET component,
automatically generated from the embedded documentation.

8.1. MySql.Data.MySqlClient Namespace

Namespace hierarchy

Classes

Class Description

BaseCommandInterceptor Provides a means of enhancing or replacing SQL
commands through the connection string rather
than recompiling.

BaseExceptionInterceptor Provides a means of enabling and disabling
exception handling through the connection string
rather than recompiling.

MySqlClientPermission Derived from the .NET DBDataPermission class.
For usage information, see Section 6.19, “Working
with Partial Trust / Medium Trust”.

MySqlCommand

MySqlCommandBuilder

MySqlConnection

MySqlDataAdapter

MySqlDataReader Provides a means of reading a forward-only
stream of rows from a MySQL database. This
class cannot be inherited.

MySqlError Collection of error codes that can be returned by
the server

MySqlException The exception that is thrown when MySQL returns
an error. This class cannot be inherited.

MySqlHelper Helper class that makes it easier to work with the
provider.

http://msdn.microsoft.com/en-us/library/system.data.common.dbdatapermission.aspx

MySql.Data.MySqlClientHierarchy

136

Class Description

MySqlInfoMessageEventArgs Provides data for the InfoMessage event. This
class cannot be inherited.

MySqlParameter Represents a parameter to a MySqlCommand,
and optionally, its mapping to DataSetcolumns.
This class cannot be inherited.

MySqlParameterCollection Represents a collection of parameters relevant
to a MySqlCommand as well as their respective
mappings to columns in a DataSet. This class
cannot be inherited.

MySqlRowUpdatedEventArgs Provides data for the RowUpdated event. This
class cannot be inherited.

MySqlRowUpdatingEventArgs Provides data for the RowUpdating event. This
class cannot be inherited.

MySqlTransaction

Delegates

Delegate Description

MySqlInfoMessageEventHandler Represents the method that will handle the
InfoMessage event of a MySqlConnection.

MySqlRowUpdatedEventHandler Represents the method that will handle the
RowUpdatedevent of a MySqlDataAdapter.

MySqlRowUpdatingEventHandler Represents the method that will handle the
RowUpdatingevent of a MySqlDataAdapter.

Enumerations

Enumeration Description

MySqlDbType Specifies MySQL-specific data type of a field,
property, for use in a MySqlParameter.

MySqlErrorCode

8.1.1. MySql.Data.MySqlClientHierarchy

See Also

MySql.Data.MySqlClient Namespace

8.1.2. BaseCommandInterceptor

The BaseCommandInterceptor class has these methods that you can override:

public virtual bool ExecuteScalar(string sql, ref object returnValue);
public virtual bool ExecuteNonQuery(string sql, ref int returnValue);
public virtual bool ExecuteReader(string sql, CommandBehavior behavior, ref MySqlDataReader returnValue);
public virtual void Init(MySqlConnection connection);

If your interceptor overrides one of the Execute... methods, set the returnValue output parameter
and return true if you handled the event, or false if you did not handle the event. The SQL command
is processed normally only when all command interceptors return false.

The connection passed to the Init method is the connection that is attached to this interceptor.

For full usage and examples, see Section 6.11, “Using the Connector/Net Interceptor Classes”.

BaseExceptionInterceptor

137

8.1.3. BaseExceptionInterceptor

You develop an exception interceptor first by creating a subclass of the
BaseExceptionInterceptor class. You must override the InterceptException() method. You
can also override the Init() method to do some one-time initialization.

Each exception interceptor has 2 methods:

public abstract Exception InterceptException(Exception exception,
 MySqlConnection connection);
public virtual void Init(MySqlConnection connection);

The connection passed to Init() is the connection that is attached to this interceptor.

Each interceptor is required to override InterceptException and return an exception. It can return
the exception it is given, or it can wrap it in a new exception. We currently do not offer the ability to
suppress the exception.

For full usage and examples, see Section 6.11, “Using the Connector/Net Interceptor Classes”.

8.1.4. MySqlCommand Class

For a list of all members of this type, see MySqlCommand Members.

Syntax: Visual Basic

NotInheritable Public Class MySqlCommand_
 Inherits Component_
 Implements IDbCommand, ICloneable

Syntax: C#

public sealed class MySqlCommand : Component, IDbCommand, ICloneable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlCommand Members, MySql.Data.MySqlClient Namespace

8.1.4.1. MySqlCommand Members

MySqlCommand overview

Public Instance Constructors

MySqlCommand Overloaded. Initializes a new instance of the
MySqlCommand class.

Public Instance Properties

CommandText

CommandTimeout

MySqlCommand Class

138

CommandType

Connection

Container (inherited from Component) Gets the IContainer that contains the Component.

IsPrepared

Parameters

Site (inherited from Component) Gets or sets the ISite of the Component.

Transaction

UpdatedRowSource

Public Instance Methods

Cancel Attempts to cancel the execution of a
MySqlCommand. This operation is not supported.

CreateObjRef (inherited from
MarshalByRefObject)

Creates an object that contains all the relevant
information required to generate a proxy used to
communicate with a remote object.

CreateParameter Creates a new instance of a MySqlParameter
object.

Dispose (inherited from Component) Releases all resources used by the Component.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

ExecuteNonQuery

ExecuteReader Overloaded.

ExecuteScalar

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetLifetimeService (inherited from
MarshalByRefObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

InitializeLifetimeService (inherited from
MarshalByRefObject)

Obtains a lifetime service object to control the
lifetime policy for this instance.

Prepare

ToString (inherited from Component) Returns a String containing the name of the
Component, if any. This method should not be
overridden.

Public Instance Events

Disposed (inherited from Component) Adds an event handler to listen to the Disposed
event on the component.

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1. MySqlCommand Constructor

Initializes a new instance of the MySqlCommand class.

Overload List

MySqlCommand Class

139

Initializes a new instance of the MySqlCommand class.

• public MySqlCommand();

• public MySqlCommand(string);

• public MySqlCommand(string,MySqlConnection);

• public MySqlCommand(string,MySqlConnection,MySqlTransaction);

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.1. MySqlCommand Constructor ()

Initializes a new instance of the MySqlCommand class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlCommand();

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand Constructor Overload
List

8.1.4.1.1.2. MySqlCommand Constructor (String)

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal cmdText As String _
)

Syntax: C#

public MySqlCommand(
stringcmdText
);

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand Constructor Overload
List

8.1.4.1.1.3. MySqlCommand Constructor

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal cmdText As String, _
 ByVal connection As MySqlConnection _
)

Syntax: C#

public MySqlCommand(
stringcmdText,
MySqlConnectionconnection
);

See Also

MySqlCommand Class

140

MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand Constructor Overload
List

8.1.4.1.1.3.1. MySqlConnection Class

For a list of all members of this type, see MySqlConnection Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlConnection_
 Inherits Component_
 Implements IDbConnection, ICloneable

Syntax: C#

public sealed class MySqlConnection : Component, IDbConnection, ICloneable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlConnection Members, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1. MySqlConnection Members

MySqlConnection overview

Public Instance Constructors

MySqlConnection Overloaded. Initializes a new instance of the
MySqlConnection class.

Public Instance Properties

ConnectionString

ConnectionTimeout

Container (inherited from Component) Gets the IContainer that contains the Component.

Database

DataSource Gets the name of the MySQL server to which to
connect.

ServerThread Returns the ID of the server thread this connection
is executing on.

ServerVersion

Site (inherited from Component) Gets or sets the ISite of the Component.

State

UseCompression Indicates if this connection should use
compression when communicating with the server.

Public Instance Methods

MySqlCommand Class

141

BeginTransaction Overloaded.

ChangeDatabase

Close

CreateCommand

CreateObjRef (inherited from
MarshalByRefObject)

Creates an object that contains all the relevant
information required to generate a proxy used to
communicate with a remote object.

Dispose (inherited from Component) Releases all resources used by the Component.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetLifetimeService (inherited from
MarshalByRefObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

InitializeLifetimeService (inherited from
MarshalByRefObject)

Obtains a lifetime service object to control the
lifetime policy for this instance.

Open

Ping Ping

ToString (inherited from Component) Returns a String containing the name of the
Component, if any. This method should not be
overridden.

Public Instance Events

Disposed (inherited from Component) Adds an event handler to listen to the Disposed
event on the component.

InfoMessage

StateChange

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.1. MySqlConnection Constructor

Initializes a new instance of the MySqlConnection class.

Overload List

Initializes a new instance of the MySqlConnection class.

• public MySqlConnection();

• public MySqlConnection(string);

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.1.1. MySqlConnection Constructor

Initializes a new instance of the MySqlConnection class.

MySqlCommand Class

142

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlConnection();

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace, MySqlConnection Constructor
Overload List

8.1.4.1.1.3.1.1.1.2. MySqlConnection Constructor

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal connectionString As String _
)

Syntax: C#

public MySqlConnection(
stringconnectionString
);

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace, MySqlConnection Constructor
Overload List

8.1.4.1.1.3.1.1.2. ConnectionString Property

Syntax: Visual Basic

NotOverridable Public Property ConnectionString As String _
_
 Implements IDbConnection.ConnectionString

Syntax: C#

public string ConnectionString {get; set;}

Implements

IDbConnection.ConnectionString

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.3. ConnectionTimeout Property

Syntax: Visual Basic

NotOverridable Public ReadOnly Property ConnectionTimeout As Integer _
_
 Implements IDbConnection.ConnectionTimeout

Syntax: C#

public int ConnectionTimeout {get;}

Implements

IDbConnection.ConnectionTimeout

MySqlCommand Class

143

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.4. Database Property

Syntax: Visual Basic

NotOverridable Public ReadOnly Property Database As String _
_
 Implements IDbConnection.Database

Syntax: C#

public string Database {get;}

Implements

IDbConnection.Database

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.5. DataSource Property

Gets the name of the MySQL server to which to connect.

Syntax: Visual Basic

Public ReadOnly Property DataSource As String

Syntax: C#

public string DataSource {get;}

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.6. ServerThread Property

Returns the ID of the server thread this connection is executing on

Syntax: Visual Basic

Public ReadOnly Property ServerThread As Integer

Syntax: C#

public int ServerThread {get;}

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.7. ServerVersion Property

Syntax: Visual Basic

Public ReadOnly Property ServerVersion As String

Syntax: C#

public string ServerVersion {get;}

MySqlCommand Class

144

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.8. State Property

Syntax: Visual Basic

NotOverridable Public ReadOnly Property State As ConnectionState _
_
 Implements IDbConnection.State

Syntax: C#

public System.Data.ConnectionState State {get;}

Implements

IDbConnection.State

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.9. UseCompression Property

Indicates if this connection should use compression when communicating with the server.

Syntax: Visual Basic

Public ReadOnly Property UseCompression As Boolean

Syntax: C#

public bool UseCompression {get;}

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.10. BeginTransaction Method

Overload List

• public MySqlTransaction BeginTransaction();

• public MySqlTransaction BeginTransaction(IsolationLevel);

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.10.1. MySqlConnection.BeginTransaction Method

Syntax: Visual Basic

Overloads Public Function BeginTransaction() As MySqlTransaction

Syntax: C#

public MySqlTransaction BeginTransaction();

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace, MySqlConnection.BeginTransaction
Overload List

MySqlCommand Class

145

8.1.4.1.1.3.1.1.10.1.1. MySqlTransaction Class

For a list of all members of this type, see MySqlTransaction Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlTransaction_
 Implements IDbTransaction, IDisposable

Syntax: C#

public sealed class MySqlTransaction : IDbTransaction, IDisposable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlTransaction Members, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.10.1.1.1. MySqlTransaction Members

MySqlTransaction overview

Public Instance Properties

Connection Gets the MySqlConnection object associated with
the transaction, or a null reference (Nothing in
Visual Basic) if the transaction is no longer valid.

IsolationLevel Specifies the IsolationLevel for this transaction.

Public Instance Methods

Commit

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Rollback

ToString (inherited from Object) Returns a String that represents the current
Object.

See Also

MySqlTransaction Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.10.1.1.1.1. Connection Property

Gets the MySqlConnection object associated with the transaction, or a null reference (Nothing in Visual
Basic) if the transaction is no longer valid.

MySqlCommand Class

146

Syntax: Visual Basic

Public ReadOnly Property Connection As MySqlConnection

Syntax: C#

public MySqlConnection Connection {get;}

Property Value

The MySqlConnection object associated with this transaction.

Remarks

A single application may have multiple database connections, each with zero or more transactions.
This property enables you to determine the connection object associated with a particular transaction
created by BeginTransaction.

See Also

MySqlTransaction Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.10.1.1.1.2. IsolationLevel Property

Specifies the IsolationLevel for this transaction.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property IsolationLevel As IsolationLevel _
_
 Implements IDbTransaction.IsolationLevel

Syntax: C#

public System.Data.IsolationLevel IsolationLevel {get;}

Property Value

The IsolationLevel for this transaction. The default is ReadCommitted.

Implements

IDbTransaction.IsolationLevel

Remarks

Parallel transactions are not supported. Therefore, the IsolationLevel applies to the entire transaction.

See Also

MySqlTransaction Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.10.1.1.1.3. MySqlTransaction.Commit Method

Syntax: Visual Basic

NotOverridable Public Sub Commit() _
_
 Implements IDbTransaction.Commit

Syntax: C#

public void Commit();

Implements

MySqlCommand Class

147

IDbTransaction.Commit

See Also

MySqlTransaction Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.10.1.1.1.4. MySqlTransaction.Rollback Method

Syntax: Visual Basic

NotOverridable Public Sub Rollback() _
_
 Implements IDbTransaction.Rollback

Syntax: C#

public void Rollback();

Implements

IDbTransaction.Rollback

See Also

MySqlTransaction Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.10.2. MySqlConnection.BeginTransaction Method

Syntax: Visual Basic

Overloads Public Function BeginTransaction(_
 ByVal iso As IsolationLevel _
) As MySqlTransaction

Syntax: C#

public MySqlTransaction BeginTransaction(
IsolationLeveliso
);

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace, MySqlConnection.BeginTransaction
Overload List

8.1.4.1.1.3.1.1.11. MySqlConnection.ChangeDatabase Method

Syntax: Visual Basic

NotOverridable Public Sub ChangeDatabase(_
 ByVal databaseName As String _
) _
_
 Implements IDbConnection.ChangeDatabase

Syntax: C#

public void ChangeDatabase(
stringdatabaseName
);

Implements

IDbConnection.ChangeDatabase

See Also

MySqlCommand Class

148

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.12. MySqlConnection.Close Method

Syntax: Visual Basic

NotOverridable Public Sub Close() _
_
 Implements IDbConnection.Close

Syntax: C#

public void Close();

Implements

IDbConnection.Close

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.13. MySqlConnection.CreateCommand Method

Syntax: Visual Basic

Public Function CreateCommand() As MySqlCommand

Syntax: C#

public MySqlCommand CreateCommand();

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.14. MySqlConnection.Open Method

Syntax: Visual Basic

NotOverridable Public Sub Open() _
_
 Implements IDbConnection.Open

Syntax: C#

public void Open();

Implements

IDbConnection.Open

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.15. MySqlConnection.Ping Method

Ping

Syntax: Visual Basic

Public Function Ping() As Boolean

Syntax: C#

MySqlCommand Class

149

public bool Ping();

Return Value

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16. MySqlConnection.InfoMessage Event

Syntax: Visual Basic

Public Event InfoMessage As MySqlInfoMessageEventHandler

Syntax: C#

public event MySqlInfoMessageEventHandler InfoMessage;

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1. MySqlInfoMessageEventHandler Delegate

Represents the method that will handle the InfoMessage event of a MySqlConnection.

Syntax: Visual Basic

Public Delegate Sub MySqlInfoMessageEventHandler(_
 ByVal sender As Object, _
 ByVal args As MySqlInfoMessageEventArgs _
)

Syntax: C#

public delegate void MySqlInfoMessageEventHandler(
objectsender,
MySqlInfoMessageEventArgsargs
);

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1.1. MySqlInfoMessageEventArgs Class

Provides data for the InfoMessage event. This class cannot be inherited.

For a list of all members of this type, see MySqlInfoMessageEventArgs Members .

Syntax: Visual Basic

Public Class MySqlInfoMessageEventArgs_
 Inherits EventArgs

Syntax: C#

public class MySqlInfoMessageEventArgs : EventArgs

Thread Safety

MySqlCommand Class

150

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlInfoMessageEventArgs Members, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1.1.1. MySqlInfoMessageEventArgs Members

MySqlInfoMessageEventArgs overview

Public Instance Constructors

MySqlInfoMessageEventArgs Constructor Initializes a new instance of the
MySqlInfoMessageEventArgs class.

Public Instance Fields

errors

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current
Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources
and perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlInfoMessageEventArgs Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1.1.1.1. MySqlInfoMessageEventArgs Constructor

Initializes a new instance of the MySqlInfoMessageEventArgs class.

Syntax: Visual Basic

Public Sub New()

Syntax: C#

public MySqlInfoMessageEventArgs();

MySqlCommand Class

151

See Also

MySqlInfoMessageEventArgs Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1.1.1.2. MySqlInfoMessageEventArgs.errors Field

Syntax: Visual Basic

Public errors As MySqlError()

Syntax: C#

public MySqlError[] errors;

See Also

MySqlInfoMessageEventArgs Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1.1.1.2.1. MySqlError Class

Collection of error codes that can be returned by the server

For a list of all members of this type, see MySqlError Members .

Syntax: Visual Basic

Public Class MySqlError

Syntax: C#

public class MySqlError

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlError Members, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1.1.1.2.1.1. MySqlError Members

MySqlError overview

Public Instance Constructors

MySqlError Constructor

Public Instance Properties

Code Error code

Level Error level

Message Error message

Public Instance Methods

MySqlCommand Class

152

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current
Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources
and perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlError Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1.1.1.2.1.1.1. MySqlError Constructor

Syntax: Visual Basic

Public Sub New(_
 ByVal level As String, _
 ByVal code As Integer, _
 ByVal message As String _
)

Syntax: C#

public MySqlError(
stringlevel,
intcode,
stringmessage
);

Parameters

• level:

• code:

• message:

See Also

MySqlError Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1.1.1.2.1.1.2. Code Property

Error code

Syntax: Visual Basic

Public ReadOnly Property Code As Integer

Syntax: C#

public int Code {get;}

MySqlCommand Class

153

See Also

MySqlError Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1.1.1.2.1.1.3. Level Property

Error level

Syntax: Visual Basic

Public ReadOnly Property Level As String

Syntax: C#

public string Level {get;}

See Also

MySqlError Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.16.1.1.1.2.1.1.4. Message Property

Error message

Syntax: Visual Basic

Public ReadOnly Property Message As String

Syntax: C#

public string Message {get;}

See Also

MySqlError Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.3.1.1.17. MySqlConnection.StateChange Event

Syntax: Visual Basic

Public Event StateChange As StateChangeEventHandler

Syntax: C#

public event StateChangeEventHandler StateChange;

See Also

MySqlConnection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.1.4. MySqlCommand Constructor

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal cmdText As String, _
 ByVal connection As MySqlConnection, _
 ByVal transaction As MySqlTransaction _
)

Syntax: C#

public MySqlCommand(
stringcmdText,
MySqlConnectionconnection,
MySqlTransactiontransaction

MySqlCommand Class

154

);

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand Constructor Overload
List

8.1.4.1.2. CommandText Property

Syntax: Visual Basic

NotOverridable Public Property CommandText As String _
_
 Implements IDbCommand.CommandText

Syntax: C#

public string CommandText {get; set;}

Implements

IDbCommand.CommandText

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.3. CommandTimeout Property

Syntax: Visual Basic

NotOverridable Public Property CommandTimeout As Integer _
_
 Implements IDbCommand.CommandTimeout

Syntax: C#

public int CommandTimeout {get; set;}

Implements

IDbCommand.CommandTimeout

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.4. CommandType Property

Syntax: Visual Basic

NotOverridable Public Property CommandType As CommandType _
_
 Implements IDbCommand.CommandType

Syntax: C#

public System.Data.CommandType CommandType {get; set;}

Implements

IDbCommand.CommandType

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

MySqlCommand Class

155

8.1.4.1.5. Connection Property

Syntax: Visual Basic

Public Property Connection As MySqlConnection

Syntax: C#

public MySqlConnection Connection {get; set;}

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.6. IsPrepared Property

Syntax: Visual Basic

Public ReadOnly Property IsPrepared As Boolean

Syntax: C#

public bool IsPrepared {get;}

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7. Parameters Property

Syntax: Visual Basic

Public ReadOnly Property Parameters As MySqlParameterCollection

Syntax: C#

public MySqlParameterCollection Parameters {get;}

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1. MySqlParameterCollection Class

Represents a collection of parameters relevant to a MySqlCommand as well as their respective
mappings to columns in a DataSet. This class cannot be inherited.

For a list of all members of this type, see MySqlParameterCollection Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlParameterCollection_
 Inherits MarshalByRefObject_
 Implements IDataParameterCollection, IList, ICollection, IEnumerable

Syntax: C#

public sealed class MySqlParameterCollection : MarshalByRefObject, IDataParameterCollection, IList, ICollection, IEnumerable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

MySqlCommand Class

156

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlParameterCollection Members, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1. MySqlParameterCollection Members

MySqlParameterCollection overview

Public Instance Constructors

MySqlParameterCollection Constructor Initializes a new instance of the
MySqlParameterCollection class.

Public Instance Properties

Count Gets the number of MySqlParameter objects in
the collection.

Item Overloaded. Gets the MySqlParameter with a
specified attribute. In C#, this property is the
indexer for the MySqlParameterCollection class.

Public Instance Methods

Add Overloaded. Adds the specified MySqlParameter
object to the MySqlParameterCollection.

Clear Removes all items from the collection.

Contains Overloaded. Gets a value indicating whether a
MySqlParameter exists in the collection.

CopyTo Copies MySqlParameter objects from the
MySqlParameterCollection to the specified array.

CreateObjRef (inherited from
MarshalByRefObject)

Creates an object that contains all the relevant
information required to generate a proxy used to
communicate with a remote object.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetLifetimeService (inherited from
MarshalByRefObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

IndexOf Overloaded. Gets the location of a
MySqlParameter in the collection.

InitializeLifetimeService (inherited from
MarshalByRefObject)

Obtains a lifetime service object to control the
lifetime policy for this instance.

Insert Inserts a MySqlParameter into the collection at the
specified index.

Remove Removes the specified MySqlParameter from the
collection.

MySqlCommand Class

157

RemoveAt Overloaded. Removes the specified
MySqlParameter from the collection.

ToString (inherited from Object) Returns a String that represents the current
Object.

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.1. MySqlParameterCollection Constructor

Initializes a new instance of the MySqlParameterCollection class.

Syntax: Visual Basic

Public Sub New()

Syntax: C#

public MySqlParameterCollection();

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.2. Count Property

Gets the number of MySqlParameter objects in the collection.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property Count As Integer _
_
 Implements ICollection.Count

Syntax: C#

public int Count {get;}

Implements

ICollection.Count

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3. Item Property

Gets the MySqlParameter with a specified attribute. In C#, this property is the indexer for the
MySqlParameterCollection class.

Overload List

Gets the MySqlParameter at the specified index.

• public MySqlParameter this[int] {get; set;}

Gets the MySqlParameter with the specified name.

• public MySqlParameter this[string] {get; set;}

See Also

MySqlCommand Class

158

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1. MySqlParameter Class

Represents a parameter to a MySqlCommand, and optionally, its mapping to DataSetcolumns. This
class cannot be inherited.

For a list of all members of this type, see MySqlParameter Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlParameter_
 Inherits MarshalByRefObject_
 Implements IDataParameter, IDbDataParameter, ICloneable

Syntax: C#

public sealed class MySqlParameter : MarshalByRefObject, IDataParameter, IDbDataParameter, ICloneable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlParameter Members, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1. MySqlParameter Members

MySqlParameter overview

Public Instance Constructors

MySqlParameter Overloaded. Initializes a new instance of the
MySqlParameter class.

Public Instance Properties

DbType Gets or sets the DbType of the parameter.

Direction Gets or sets a value indicating whether the
parameter is input-only, output-only, bidirectional,
or a stored procedure return value parameter. As
of MySQL version 4.1 and earlier, input-only is the
only valid choice.

IsNullable Gets or sets a value indicating whether the
parameter accepts null values.

IsUnsigned

MySqlDbType Gets or sets the MySqlDbType of the parameter.

ParameterName Gets or sets the name of the MySqlParameter.

Precision Gets or sets the maximum number of digits used
to represent the Value property.

Scale Gets or sets the number of decimal places to
which Value is resolved.

MySqlCommand Class

159

Size Gets or sets the maximum size, in bytes, of the
data within the column.

SourceColumn Gets or sets the name of the source column that
is mapped to the DataSetand used for loading or
returning the Value.

SourceVersion Gets or sets the DataRowVersion to use when
loading Value.

Value Gets or sets the value of the parameter.

Public Instance Methods

CreateObjRef (inherited from
MarshalByRefObject)

Creates an object that contains all the relevant
information required to generate a proxy used to
communicate with a remote object.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetLifetimeService (inherited from
MarshalByRefObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

InitializeLifetimeService (inherited from
MarshalByRefObject)

Obtains a lifetime service object to control the
lifetime policy for this instance.

ToString Overridden. Gets a string containing the
ParameterName.

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.1. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class.

Overload List

Initializes a new instance of the MySqlParameter class.

• public MySqlParameter();

Initializes a new instance of the MySqlParameter class with the parameter name and the data type.

• public MySqlParameter(string,MySqlDbType);

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType,
and the size.

• public MySqlParameter(string,MySqlDbType,int);

Initializes a new instance of the MySqlParameter class with the parameter name, the type of the
parameter, the size of the parameter, a ParameterDirection, the precision of the parameter, the scale of
the parameter, the source column, a DataRowVersion to use, and the value of the parameter.

• public
MySqlParameter(string,MySqlDbType,int,ParameterDirection,bool,byte,byte,string,DataRowVersion,object);

MySqlCommand Class

160

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType,
the size, and the source column name.

• public MySqlParameter(string,MySqlDbType,int,string);

Initializes a new instance of the MySqlParameter class with the parameter name and a value of the
new MySqlParameter.

• public MySqlParameter(string,object);

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.1.1. MySqlParameter Constructor ()

Initializes a new instance of the MySqlParameter class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlParameter();

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload
List

8.1.4.1.7.1.1.3.1.1.1.2. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class with the parameter name and the data type.

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal parameterName As String, _
 ByVal dbType As MySqlDbType _
)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType
);

Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload
List

8.1.4.1.7.1.1.3.1.1.1.2.1. MySqlDbType Enumeration

Specifies MySQL-specific data type of a field, property, for use in a MySqlParameter.

Syntax: Visual Basic

MySqlCommand Class

161

Public Enum MySqlDbType

Syntax: C#

public enum MySqlDbType

Members

Member Name Description

Newdate Obsolete. Use Datetime or Date type.

Timestamp A timestamp. The range is '1970-01-01
00:00:01.000000' to '2038-01-19
03:14:07.999999'. (Fractional seconds can only
be stored with a MySQL 5.6.4 or higher database
server.)

Time The range is '-838:59:59.000000' to
'838:59:59.000000'. (Fractional seconds can only
be stored with a MySQL 5.6.4 or higher database
server.)

Date The supported range is '1000-01-01' to
'9999-12-31'.

Datetime The supported range is '1000-01-01
00:00:00.000000' to '9999-12-31
23:59:59.999999'. (Fractional seconds can only
be stored with a MySQL 5.6.4 or higher database
server.)

Year A year in 2- or 4-digit format (default is 4-digit).
The allowable values are 1901 to 2155, 0000 in
the 4-digit year format, and 1970-2069 if you use
the 2-digit format (70-69).

TinyBlob A BLOB column with a maximum length of 255
(2^8 - 1) characters.

Blob A BLOB column with a maximum length of 65535
(2^16 - 1) characters.

MediumBlob A BLOB column with a maximum length of
16777215 (2^24 - 1) characters.

LongBlob A BLOB column with a maximum length of
4294967295 or 4G (2^32 - 1) characters.

Int16 A 16-bit signed integer. The signed range is
-32768 to 32767. The unsigned range is 0 to
65535.

Int24 Specifies a 24 (3 byte) signed or unsigned value.

Int32 A 32-bit signed integer.

Int64 A 64-bit signed integer.

Byte The signed range is -128 to 127. The unsigned
range is 0 to 255.

Float A small (single-precision) floating-point number.
Allowable values are -3.402823466E+38 to
-1.175494351E-38, 0, and 1.175494351E-38 to
3.402823466E+38.

Double A normal-size (double-precision)
floating-point number. Allowable

MySqlCommand Class

162

values are -1.7976931348623157E
+308 to -2.2250738585072014E-308,
0, and 2.2250738585072014E-308 to
1.7976931348623157E+308.

UByte An 8-bit unsigned value.

UInt16 A 16-bit unsigned value.

UInt24 A 24-bit unsigned value.

UInt32 A 32-bit unsigned value.

UInt64 A 64-bit unsigned value.

Decimal A fixed precision and scale numeric value
between -10^38-1 and 10^38-1.

NewDecimal New Decimal

Set A set. A string object that can have zero or more
values, each of which must be chosen from the list
of values 'value1', 'value2', ... A SET can have a
maximum of 64 members.

String Obsolete. Use VarChar type.

VarChar A variable-length string containing 0 to 255
characters.

VarString A variable-length string containing 0 to 65535
characters.

Enum An enumeration. A string object that can have only
one value, chosen from the list of values 'value1',
'value2', ..., NULL or the special "" error value.
An ENUM can have a maximum of 65535 distinct
values.

Geometry

Bit Bit-field data type.

TinyText A nonbinary string column supporting a maximum
length of 255 (2^8 - 1) characters.

Text A nonbinary string column supporting a maximum
length of 65535 (2^16 - 1) characters.

MediumText A nonbinary string column supporting a maximum
length of 16777215 (2^24 - 1) characters.

LongText A nonbinary string column supporting a maximum
length of 4294967295 (2^32 - 1) characters.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.1.3. MySqlParameter Constructor (String, MySqlDbType, Int32)

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType,
and the size.

Syntax: Visual Basic

MySqlCommand Class

163

Overloads Public Sub New(_
 ByVal parameterName As String, _
 ByVal dbType As MySqlDbType, _
 ByVal size As Integer _
)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize
);

Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

• size: The length of the parameter.

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload
List

8.1.4.1.7.1.1.3.1.1.1.4. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class with the parameter name, the type of the
parameter, the size of the parameter, a ParameterDirection, the precision of the parameter, the scale of
the parameter, the source column, a DataRowVersion to use, and the value of the parameter.

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal parameterName As String, _
 ByVal dbType As MySqlDbType, _
 ByVal size As Integer, _
 ByVal direction As ParameterDirection, _
 ByVal isNullable As Boolean, _
 ByVal precision As Byte, _
 ByVal scale As Byte, _
 ByVal sourceColumn As String, _
 ByVal sourceVersion As DataRowVersion, _
 ByVal value As Object _
)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize,
ParameterDirectiondirection,
boolisNullable,
byteprecision,
bytescale,
stringsourceColumn,
DataRowVersionsourceVersion,
objectvalue
);

Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

MySqlCommand Class

164

• size: The length of the parameter.

• direction: One of the ParameterDirectionvalues.

• isNullable: true if the value of the field can be null, otherwise false.

• precision: The total number of digits to the left and right of the decimal point to which Value is
resolved.

• scale: The total number of decimal places to which Value is resolved.

• sourceColumn: The name of the source column.

• sourceVersion: One of the DataRowVersionvalues.

• value: An Object that is the value of the MySqlParameter.

Exceptions

Exception Type Condition

ArgumentException

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload
List

8.1.4.1.7.1.1.3.1.1.1.4.1. Value Property

Gets or sets the value of the parameter.

Syntax: Visual Basic

NotOverridable Public Property Value As Object _
_
 Implements IDataParameter.Value

Syntax: C#

public object Value {get; set;}

Implements

IDataParameter.Value

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.1.5. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType,
the size, and the source column name.

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal parameterName As String, _
 ByVal dbType As MySqlDbType, _
 ByVal size As Integer, _
 ByVal sourceColumn As String _
)

Syntax: C#

MySqlCommand Class

165

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize,
stringsourceColumn
);

Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

• size: The length of the parameter.

• sourceColumn: The name of the source column.

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload
List

8.1.4.1.7.1.1.3.1.1.1.6. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class with the parameter name and a value of the
new MySqlParameter.

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal parameterName As String, _
 ByVal value As Object _
)

Syntax: C#

public MySqlParameter(
stringparameterName,
objectvalue
);

Parameters

• parameterName: The name of the parameter to map.

• value: An Object that is the value of the MySqlParameter.

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload
List

8.1.4.1.7.1.1.3.1.1.2. DbType Property

Gets or sets the DbType of the parameter.

Syntax: Visual Basic

NotOverridable Public Property DbType As DbType _
_
 Implements IDataParameter.DbType

Syntax: C#

public System.Data.DbType DbType {get; set;}

MySqlCommand Class

166

Implements

IDataParameter.DbType

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.3. Direction Property

Gets or sets a value indicating whether the parameter is input-only, output-only, bidirectional, or a
stored procedure return value parameter. As of MySQL version 4.1 and earlier, input-only is the only
valid choice.

Syntax: Visual Basic

NotOverridable Public Property Direction As ParameterDirection _
_
 Implements IDataParameter.Direction

Syntax: C#

public System.Data.ParameterDirection Direction {get; set;}

Implements

IDataParameter.Direction

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.4. IsNullable Property

Gets or sets a value indicating whether the parameter accepts null values.

Syntax: Visual Basic

NotOverridable Public Property IsNullable As Boolean _
_
 Implements IDataParameter.IsNullable

Syntax: C#

public bool IsNullable {get; set;}

Implements

IDataParameter.IsNullable

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.5. IsUnsigned Property

Syntax: Visual Basic

Public Property IsUnsigned As Boolean

Syntax: C#

public bool IsUnsigned {get; set;}

See Also

MySqlCommand Class

167

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.6. MySqlDbType Property

Gets or sets the MySqlDbType of the parameter.

Syntax: Visual Basic

Public Property MySqlDbType As MySqlDbType

Syntax: C#

public MySqlDbType MySqlDbType {get; set;}

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.7. ParameterName Property

Gets or sets the name of the MySqlParameter.

Syntax: Visual Basic

NotOverridable Public Property ParameterName As String _
_
 Implements IDataParameter.ParameterName

Syntax: C#

public string ParameterName {get; set;}

Implements

IDataParameter.ParameterName

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.8. Precision Property

Gets or sets the maximum number of digits used to represent the Value property.

Syntax: Visual Basic

NotOverridable Public Property Precision As Byte _
_
 Implements IDbDataParameter.Precision

Syntax: C#

public byte Precision {get; set;}

Implements

IDbDataParameter.Precision

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.9. Scale Property

Gets or sets the number of decimal places to which Value is resolved.

MySqlCommand Class

168

Syntax: Visual Basic

NotOverridable Public Property Scale As Byte _
_
 Implements IDbDataParameter.Scale

Syntax: C#

public byte Scale {get; set;}

Implements

IDbDataParameter.Scale

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.10. Size Property

Gets or sets the maximum size, in bytes, of the data within the column.

Syntax: Visual Basic

NotOverridable Public Property Size As Integer _
_
 Implements IDbDataParameter.Size

Syntax: C#

public int Size {get; set;}

Implements

IDbDataParameter.Size

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.11. SourceColumn Property

Gets or sets the name of the source column that is mapped to the DataSetand used for loading or
returning the Value.

Syntax: Visual Basic

NotOverridable Public Property SourceColumn As String _
_
 Implements IDataParameter.SourceColumn

Syntax: C#

public string SourceColumn {get; set;}

Implements

IDataParameter.SourceColumn

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.12. SourceVersion Property

Gets or sets the DataRowVersion to use when loading Value.

MySqlCommand Class

169

Syntax: Visual Basic

NotOverridable Public Property SourceVersion As DataRowVersion _
_
 Implements IDataParameter.SourceVersion

Syntax: C#

public System.Data.DataRowVersion SourceVersion {get; set;}

Implements

IDataParameter.SourceVersion

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.1.1.13. MySqlParameter.ToString Method

Overridden. Gets a string containing the ParameterName.

Syntax: Visual Basic

Overrides Public Function ToString() As String

Syntax: C#

public override string ToString();

Return Value

See Also

MySqlParameter Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.3.2. Item Property (Int32)

Gets the MySqlParameter at the specified index.

Syntax: Visual Basic

Overloads Public Default Property Item(_
 ByVal index As Integer _
) As MySqlParameter

Syntax: C#

public MySqlParameter this[
intindex
] {get; set;}

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.Item Overload List

8.1.4.1.7.1.1.3.3. Item Property (String)

Gets the MySqlParameter with the specified name.

Syntax: Visual Basic

Overloads Public Default Property Item(_
 ByVal name As String _
) As MySqlParameter

MySqlCommand Class

170

Syntax: C#

public MySqlParameter this[
stringname
] {get; set;}

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.Item Overload List

8.1.4.1.7.1.1.4. Add Method

Adds the specified MySqlParameter object to the MySqlParameterCollection.

Overload List

Adds the specified MySqlParameter object to the MySqlParameterCollection.

• public MySqlParameter Add(MySqlParameter);

Adds the specified MySqlParameter object to the MySqlParameterCollection.

• public int Add(object);

Adds a MySqlParameter to the MySqlParameterCollection given the parameter name and the data
type.

• public MySqlParameter Add(string,MySqlDbType);

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, and
the column length.

• public MySqlParameter Add(string,MySqlDbType,int);

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, the
column length, and the source column name.

• public MySqlParameter Add(string,MySqlDbType,int,string);

Adds a MySqlParameter to the MySqlParameterCollection given the specified parameter name and
value.

• public MySqlParameter Add(string,object);

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.4.1. MySqlParameterCollection.Add Method

Adds the specified MySqlParameter object to the MySqlParameterCollection.

Syntax: Visual Basic

Overloads Public Function Add(_
 ByVal value As MySqlParameter _
) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
MySqlParametervalue
);

MySqlCommand Class

171

Parameters

• value: The MySqlParameter to add to the collection.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.Add Overload List

8.1.4.1.7.1.1.4.2. MySqlParameterCollection.Add Method

Adds the specified MySqlParameter object to the MySqlParameterCollection.

Syntax: Visual Basic

NotOverridable Overloads Public Function Add(_
 ByVal value As Object _
) As Integer _
_
 Implements IList.Add

Syntax: C#

public int Add(
objectvalue
);

Parameters

• value: The MySqlParameter to add to the collection.

Return Value

The index of the new MySqlParameter object.

Implements

IList.Add

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.Add Overload List

8.1.4.1.7.1.1.4.3. MySqlParameterCollection.Add Method

Adds a MySqlParameter to the MySqlParameterCollection given the parameter name and the data
type.

Syntax: Visual Basic

Overloads Public Function Add(_
 ByVal parameterName As String, _
 ByVal dbType As MySqlDbType _
) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType
);

MySqlCommand Class

172

Parameters

• parameterName: The name of the parameter.

• dbType: One of the MySqlDbType values.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.Add Overload List

8.1.4.1.7.1.1.4.4. MySqlParameterCollection.Add Method

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, and
the column length.

Syntax: Visual Basic

Overloads Public Function Add(_
 ByVal parameterName As String, _
 ByVal dbType As MySqlDbType, _
 ByVal size As Integer _
) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType,
intsize
);

Parameters

• parameterName: The name of the parameter.

• dbType: One of the MySqlDbType values.

• size: The length of the column.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.Add Overload List

8.1.4.1.7.1.1.4.5. MySqlParameterCollection.Add Method

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, the
column length, and the source column name.

Syntax: Visual Basic

Overloads Public Function Add(_
 ByVal parameterName As String, _
 ByVal dbType As MySqlDbType, _
 ByVal size As Integer, _
 ByVal sourceColumn As String _
) As MySqlParameter

MySqlCommand Class

173

Syntax: C#

public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType,
intsize,
stringsourceColumn
);

Parameters

• parameterName: The name of the parameter.

• dbType: One of the MySqlDbType values.

• size: The length of the column.

• sourceColumn: The name of the source column.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.Add Overload List

8.1.4.1.7.1.1.4.6. MySqlParameterCollection.Add Method

Adds a MySqlParameter to the MySqlParameterCollection given the specified parameter name and
value.

Syntax: Visual Basic

Overloads Public Function Add(_
 ByVal parameterName As String, _
 ByVal value As Object _
) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
objectvalue
);

Parameters

• parameterName: The name of the parameter.

• value: The Value of the MySqlParameter to add to the collection.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.Add Overload List

8.1.4.1.7.1.1.5. MySqlParameterCollection.Clear Method

Removes all items from the collection.

MySqlCommand Class

174

Syntax: Visual Basic

NotOverridable Public Sub Clear() _
_
 Implements IList.Clear

Syntax: C#

public void Clear();

Implements

IList.Clear

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.6. Contains Method

Gets a value indicating whether a MySqlParameter exists in the collection.

Overload List

Gets a value indicating whether a MySqlParameter exists in the collection.

• public bool Contains(object);

Gets a value indicating whether a MySqlParameter with the specified parameter name exists in the
collection.

• public bool Contains(string);

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.6.1. MySqlParameterCollection.Contains Method

Gets a value indicating whether a MySqlParameter exists in the collection.

Syntax: Visual Basic

NotOverridable Overloads Public Function Contains(_
 ByVal value As Object _
) As Boolean _
_
 Implements IList.Contains

Syntax: C#

public bool Contains(
objectvalue
);

Parameters

• value: The value of the MySqlParameter object to find.

Return Value

true if the collection contains the MySqlParameter object; otherwise, false.

Implements

IList.Contains

MySqlCommand Class

175

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.Contains Overload List

8.1.4.1.7.1.1.6.2. MySqlParameterCollection.Contains Method

Gets a value indicating whether a MySqlParameter with the specified parameter name exists in the
collection.

Syntax: Visual Basic

NotOverridable Overloads Public Function Contains(_
 ByVal name As String _
) As Boolean _
_
 Implements IDataParameterCollection.Contains

Syntax: C#

public bool Contains(
stringname
);

Parameters

• name: The name of the MySqlParameter object to find.

Return Value

true if the collection contains the parameter; otherwise, false.

Implements

IDataParameterCollection.Contains

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.Contains Overload List

8.1.4.1.7.1.1.7. MySqlParameterCollection.CopyTo Method

Copies MySqlParameter objects from the MySqlParameterCollection to the specified array.

Syntax: Visual Basic

NotOverridable Public Sub CopyTo(_
 ByVal array As Array, _
 ByVal index As Integer _
) _
_
 Implements ICollection.CopyTo

Syntax: C#

public void CopyTo(
Arrayarray,
intindex
);

Parameters

• array:

• index:

http://dev.mysql.com/doc/refman/5.5/en/explain-output.html#jointype_index

MySqlCommand Class

176

Implements

ICollection.CopyTo

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.8. IndexOf Method

Gets the location of a MySqlParameter in the collection.

Overload List

Gets the location of a MySqlParameter in the collection.

• public int IndexOf(object);

Gets the location of the MySqlParameter in the collection with a specific parameter name.

• public int IndexOf(string);

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.8.1. MySqlParameterCollection.IndexOf Method

Gets the location of a MySqlParameter in the collection.

Syntax: Visual Basic

NotOverridable Overloads Public Function IndexOf(_
 ByVal value As Object _
) As Integer _
_
 Implements IList.IndexOf

Syntax: C#

public int IndexOf(
objectvalue
);

Parameters

• value: The MySqlParameter object to locate.

Return Value

The zero-based location of the MySqlParameter in the collection.

Implements

IList.IndexOf

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.IndexOf Overload List

8.1.4.1.7.1.1.8.2. MySqlParameterCollection.IndexOf Method

Gets the location of the MySqlParameter in the collection with a specific parameter name.

Syntax: Visual Basic

MySqlCommand Class

177

NotOverridable Overloads Public Function IndexOf(_
 ByVal parameterName As String _
) As Integer _
_
 Implements IDataParameterCollection.IndexOf

Syntax: C#

public int IndexOf(
stringparameterName
);

Parameters

• parameterName: The name of the MySqlParameter object to retrieve.

Return Value

The zero-based location of the MySqlParameter in the collection.

Implements

IDataParameterCollection.IndexOf

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.IndexOf Overload List

8.1.4.1.7.1.1.9. MySqlParameterCollection.Insert Method

Inserts a MySqlParameter into the collection at the specified index.

Syntax: Visual Basic

NotOverridable Public Sub Insert(_
 ByVal index As Integer, _
 ByVal value As Object _
) _
_
 Implements IList.Insert

Syntax: C#

public void Insert(
intindex,
objectvalue
);

Parameters

• index:

• value:

Implements

IList.Insert

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.10. MySqlParameterCollection.Remove Method

Removes the specified MySqlParameter from the collection.

http://dev.mysql.com/doc/refman/5.5/en/explain-output.html#jointype_index

MySqlCommand Class

178

Syntax: Visual Basic

NotOverridable Public Sub Remove(_
 ByVal value As Object _
) _
_
 Implements IList.Remove

Syntax: C#

public void Remove(
objectvalue
);

Parameters

• value:

Implements

IList.Remove

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.11. RemoveAt Method

Removes the specified MySqlParameter from the collection.

Overload List

Removes the specified MySqlParameter from the collection using a specific index.

• public void RemoveAt(int);

Removes the specified MySqlParameter from the collection using the parameter name.

• public void RemoveAt(string);

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace

8.1.4.1.7.1.1.11.1. MySqlParameterCollection.RemoveAt Method

Removes the specified MySqlParameter from the collection using a specific index.

Syntax: Visual Basic

NotOverridable Overloads Public Sub RemoveAt(_
 ByVal index As Integer _
) _
_
 Implements IList.RemoveAt

Syntax: C#

public void RemoveAt(
intindex
);

Parameters

• index: The zero-based index of the parameter.

Implements

http://dev.mysql.com/doc/refman/5.5/en/explain-output.html#jointype_index

MySqlCommand Class

179

IList.RemoveAt

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.RemoveAt Overload List

8.1.4.1.7.1.1.11.2. MySqlParameterCollection.RemoveAt Method

Removes the specified MySqlParameter from the collection using the parameter name.

Syntax: Visual Basic

NotOverridable Overloads Public Sub RemoveAt(_
 ByVal name As String _
) _
_
 Implements IDataParameterCollection.RemoveAt

Syntax: C#

public void RemoveAt(
stringname
);

Parameters

• name: The name of the MySqlParameter object to retrieve.

Implements

IDataParameterCollection.RemoveAt

See Also

MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace,
MySqlParameterCollection.RemoveAt Overload List

8.1.4.1.8. Transaction Property

Syntax: Visual Basic

Public Property Transaction As MySqlTransaction

Syntax: C#

public MySqlTransaction Transaction {get; set;}

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.9. UpdatedRowSource Property

Syntax: Visual Basic

NotOverridable Public Property UpdatedRowSource As UpdateRowSource _
_
 Implements IDbCommand.UpdatedRowSource

Syntax: C#

public System.Data.UpdateRowSource UpdatedRowSource {get; set;}

Implements

MySqlCommand Class

180

IDbCommand.UpdatedRowSource

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.10. MySqlCommand.Cancel Method

Attempts to cancel the execution of a MySqlCommand. This operation is not supported.

Syntax: Visual Basic

NotOverridable Public Sub Cancel() _
_
 Implements IDbCommand.Cancel

Syntax: C#

public void Cancel();

Implements

IDbCommand.Cancel

Remarks

Cancelling an executing command is currently not supported on any version of MySQL.

Exceptions

Exception Type Condition

NotSupportedException This operation is not supported.

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.11. MySqlCommand.CreateParameter Method

Creates a new instance of a MySqlParameter object.

Syntax: Visual Basic

Public Function CreateParameter() As MySqlParameter

Syntax: C#

public MySqlParameter CreateParameter();

Return Value

A MySqlParameter object.

Remarks

This method is a strongly-typed version of CreateParameter.

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.12. MySqlCommand.ExecuteNonQuery Method

Syntax: Visual Basic

MySqlCommand Class

181

NotOverridable Public Function ExecuteNonQuery() As Integer _
_
 Implements IDbCommand.ExecuteNonQuery

Syntax: C#

public int ExecuteNonQuery();

Implements

IDbCommand.ExecuteNonQuery

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13. ExecuteReader Method

Overload List

• public MySqlDataReader ExecuteReader();

• public MySqlDataReader ExecuteReader(CommandBehavior);

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1. MySqlCommand.ExecuteReader Method

Syntax: Visual Basic

Overloads Public Function ExecuteReader() As MySqlDataReader

Syntax: C#

public MySqlDataReader ExecuteReader();

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand.ExecuteReader
Overload List

8.1.4.1.13.1.1. MySqlDataReader Class

Provides a means of reading a forward-only stream of rows from a MySQL database. This class cannot
be inherited.

For a list of all members of this type, see MySqlDataReader Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlDataReader_
 Inherits MarshalByRefObject_
 Implements IEnumerable, IDataReader, IDisposable, IDataRecord

Syntax: C#

public sealed class MySqlDataReader : MarshalByRefObject, IEnumerable, IDataReader, IDisposable, IDataRecord

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

MySqlCommand Class

182

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlDataReader Members, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1. MySqlDataReader Members

MySqlDataReader overview

Public Instance Properties

Depth Gets a value indicating the depth of nesting for
the current row. This method is not supported
currently and always returns 0.

FieldCount Gets the number of columns in the current row.

HasRows Gets a value indicating whether the
MySqlDataReader contains one or more rows.

IsClosed Gets a value indicating whether the data reader is
closed.

Item Overloaded. Overloaded. Gets the value of a
column in its native format. In C#, this property is
the indexer for the MySqlDataReader class.

RecordsAffected Gets the number of rows changed, inserted, or
deleted by execution of the SQL statement.

Public Instance Methods

Close Closes the MySqlDataReader object.

CreateObjRef (inherited from
MarshalByRefObject)

Creates an object that contains all the relevant
information required to generate a proxy used to
communicate with a remote object.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBoolean Gets the value of the specified column as a
Boolean.

GetByte Gets the value of the specified column as a byte.

GetBytes Reads a stream of bytes from the specified
column offset into the buffer an array starting at
the given buffer offset.

GetChar Gets the value of the specified column as a single
character.

GetChars Reads a stream of characters from the specified
column offset into the buffer as an array starting at
the given buffer offset.

GetDataTypeName Gets the name of the source data type.

GetDateTime

GetDecimal

GetDouble

GetFieldType Gets the Type that is the data type of the object.

MySqlCommand Class

183

GetFloat

GetGuid

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetInt16

GetInt32

GetInt64

GetLifetimeService (inherited from
MarshalByRefObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetMySqlDateTime

GetName Gets the name of the specified column.

GetOrdinal Gets the column ordinal, given the name of the
column.

GetSchemaTable Returns a DataTable that describes the column
metadata of the MySqlDataReader.

GetString

GetTimeSpan

GetType (inherited from Object) Gets the Type of the current instance.

GetUInt16

GetUInt32

GetUInt64

GetValue Gets the value of the specified column in its native
format.

GetValues Gets all attribute columns in the collection for the
current row.

InitializeLifetimeService (inherited from
MarshalByRefObject)

Obtains a lifetime service object to control the
lifetime policy for this instance.

IsDBNull Gets a value indicating whether the column
contains non-existent or missing values.

NextResult Advances the data reader to the next result, when
reading the results of batch SQL statements.

Read Advances the MySqlDataReader to the next
record.

ToString (inherited from Object) Returns a String that represents the current
Object.

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.1. Depth Property

Gets a value indicating the depth of nesting for the current row. This method is not supported currently
and always returns 0.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property Depth As Integer _
_
 Implements IDataReader.Depth

MySqlCommand Class

184

Syntax: C#

public int Depth {get;}

Implements

IDataReader.Depth

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.2. FieldCount Property

Gets the number of columns in the current row.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property FieldCount As Integer _
_
 Implements IDataRecord.FieldCount

Syntax: C#

public int FieldCount {get;}

Implements

IDataRecord.FieldCount

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.3. HasRows Property

Gets a value indicating whether the MySqlDataReader contains one or more rows.

Syntax: Visual Basic

Public ReadOnly Property HasRows As Boolean

Syntax: C#

public bool HasRows {get;}

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.4. IsClosed Property

Gets a value indicating whether the data reader is closed.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property IsClosed As Boolean _
_
 Implements IDataReader.IsClosed

Syntax: C#

public bool IsClosed {get;}

Implements

MySqlCommand Class

185

IDataReader.IsClosed

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.5. Item Property

Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the
MySqlDataReader class.

Overload List

Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the
MySqlDataReader class.

• public object this[int] {get;}

Gets the value of a column in its native format. In C#, this property is the indexer for the
MySqlDataReader class.

• public object this[string] {get;}

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.5.1. Item Property (Int32)

Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the
MySqlDataReader class.

Syntax: Visual Basic

NotOverridable Overloads Public Default ReadOnly Property Item(_
 ByVal i As Integer _
) _
_
 Implements IDataRecord.Item As Object _
_
 Implements IDataRecord.Item

Syntax: C#

public object this[
inti
] {get;}

Implements

IDataRecord.Item

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace, MySqlDataReader.Item Overload List

8.1.4.1.13.1.1.1.5.2. Item Property (String)

Gets the value of a column in its native format. In C#, this property is the indexer for the
MySqlDataReader class.

Syntax: Visual Basic

NotOverridable Overloads Public Default ReadOnly Property Item(_
 ByVal name As String _

MySqlCommand Class

186

) _
_
 Implements IDataRecord.Item As Object _
_
 Implements IDataRecord.Item

Syntax: C#

public object this[
stringname
] {get;}

Implements

IDataRecord.Item

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace, MySqlDataReader.Item Overload List

8.1.4.1.13.1.1.1.6. RecordsAffected Property

Gets the number of rows changed, inserted, or deleted by execution of the SQL statement.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property RecordsAffected As Integer _
_
 Implements IDataReader.RecordsAffected

Syntax: C#

public int RecordsAffected {get;}

Implements

IDataReader.RecordsAffected

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.7. MySqlDataReader.Close Method

Closes the MySqlDataReader object.

Syntax: Visual Basic

NotOverridable Public Sub Close() _
_
 Implements IDataReader.Close

Syntax: C#

public void Close();

Implements

IDataReader.Close

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.8. MySqlDataReader.GetBoolean Method

Gets the value of the specified column as a Boolean.

MySqlCommand Class

187

Syntax: Visual Basic

NotOverridable Public Function GetBoolean(_
 ByVal i As Integer _
) As Boolean _
_
 Implements IDataRecord.GetBoolean

Syntax: C#

public bool GetBoolean(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetBoolean

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.9. MySqlDataReader.GetByte Method

Gets the value of the specified column as a byte.

Syntax: Visual Basic

NotOverridable Public Function GetByte(_
 ByVal i As Integer _
) As Byte _
_
 Implements IDataRecord.GetByte

Syntax: C#

public byte GetByte(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetByte

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.10. MySqlDataReader.GetBytes Method

Reads a stream of bytes from the specified column offset into the buffer an array starting at the given
buffer offset.

Syntax: Visual Basic

MySqlCommand Class

188

NotOverridable Public Function GetBytes(_
 ByVal i As Integer, _
 ByVal dataIndex As Long, _
 ByVal buffer As Byte(), _
 ByVal bufferIndex As Integer, _
 ByVal length As Integer _
) As Long _
_
 Implements IDataRecord.GetBytes

Syntax: C#

public long GetBytes(
inti,
longdataIndex,
byte[]buffer,
intbufferIndex,
intlength
);

Parameters

• i: The zero-based column ordinal.

• dataIndex: The index within the field from which to begin the read operation.

• buffer: The buffer into which to read the stream of bytes.

• bufferIndex: The index for buffer to begin the read operation.

• length: The maximum length to copy into the buffer.

Return Value

The actual number of bytes read.

Implements

IDataRecord.GetBytes

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.11. MySqlDataReader.GetChar Method

Gets the value of the specified column as a single character.

Syntax: Visual Basic

NotOverridable Public Function GetChar(_
 ByVal i As Integer _
) As Char _
_
 Implements IDataRecord.GetChar

Syntax: C#

public char GetChar(
inti
);

Parameters

• i:

Return Value

MySqlCommand Class

189

Implements

IDataRecord.GetChar

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.12. MySqlDataReader.GetChars Method

Reads a stream of characters from the specified column offset into the buffer as an array starting at the
given buffer offset.

Syntax: Visual Basic

NotOverridable Public Function GetChars(_
 ByVal i As Integer, _
 ByVal fieldOffset As Long, _
 ByVal buffer As Char(), _
 ByVal bufferoffset As Integer, _
 ByVal length As Integer _
) As Long _
_
 Implements IDataRecord.GetChars

Syntax: C#

public long GetChars(
inti,
longfieldOffset,
char[]buffer,
intbufferoffset,
intlength
);

Parameters

• i:

• fieldOffset:

• buffer:

• bufferoffset:

• length:

Return Value

Implements

IDataRecord.GetChars

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.13. MySqlDataReader.GetDataTypeName Method

Gets the name of the source data type.

Syntax: Visual Basic

NotOverridable Public Function GetDataTypeName(_
 ByVal i As Integer _
) As String _
_

MySqlCommand Class

190

 Implements IDataRecord.GetDataTypeName

Syntax: C#

public string GetDataTypeName(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetDataTypeName

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.14. MySqlDataReader.GetDateTime Method

Syntax: Visual Basic

NotOverridable Public Function GetDateTime(_
 ByVal index As Integer _
) As Date _
_
 Implements IDataRecord.GetDateTime

Syntax: C#

public DateTime GetDateTime(
intindex
);

Implements

IDataRecord.GetDateTime

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.15. MySqlDataReader.GetDecimal Method

Syntax: Visual Basic

NotOverridable Public Function GetDecimal(_
 ByVal index As Integer _
) As Decimal _
_
 Implements IDataRecord.GetDecimal

Syntax: C#

public decimal GetDecimal(
intindex
);

Implements

IDataRecord.GetDecimal

See Also

MySqlCommand Class

191

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.16. MySqlDataReader.GetDouble Method

Syntax: Visual Basic

NotOverridable Public Function GetDouble(_
 ByVal index As Integer _
) As Double _
_
 Implements IDataRecord.GetDouble

Syntax: C#

public double GetDouble(
intindex
);

Implements

IDataRecord.GetDouble

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.17. MySqlDataReader.GetFieldType Method

Gets the Type that is the data type of the object.

Syntax: Visual Basic

NotOverridable Public Function GetFieldType(_
 ByVal i As Integer _
) As Type _
_
 Implements IDataRecord.GetFieldType

Syntax: C#

public Type GetFieldType(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetFieldType

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.18. MySqlDataReader.GetFloat Method

Syntax: Visual Basic

NotOverridable Public Function GetFloat(_
 ByVal index As Integer _
) As Single _
_
 Implements IDataRecord.GetFloat

MySqlCommand Class

192

Syntax: C#

public float GetFloat(
intindex
);

Implements

IDataRecord.GetFloat

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.19. MySqlDataReader.GetGuid Method

Syntax: Visual Basic

NotOverridable Public Function GetGuid(_
 ByVal index As Integer _
) As Guid _
_
 Implements IDataRecord.GetGuid

Syntax: C#

public Guid GetGuid(
intindex
);

Implements

IDataRecord.GetGuid

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.20. MySqlDataReader.GetInt16 Method

Syntax: Visual Basic

NotOverridable Public Function GetInt16(_
 ByVal index As Integer _
) As Short _
_
 Implements IDataRecord.GetInt16

Syntax: C#

public short GetInt16(
intindex
);

Implements

IDataRecord.GetInt16

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.21. MySqlDataReader.GetInt32 Method

Syntax: Visual Basic

NotOverridable Public Function GetInt32(_

MySqlCommand Class

193

 ByVal index As Integer _
) As Integer _
_
 Implements IDataRecord.GetInt32

Syntax: C#

public int GetInt32(
intindex
);

Implements

IDataRecord.GetInt32

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.22. MySqlDataReader.GetInt64 Method

Syntax: Visual Basic

NotOverridable Public Function GetInt64(_
 ByVal index As Integer _
) As Long _
_
 Implements IDataRecord.GetInt64

Syntax: C#

public long GetInt64(
intindex
);

Implements

IDataRecord.GetInt64

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.23. MySqlDataReader.GetMySqlDateTime Method

Syntax: Visual Basic

Public Function GetMySqlDateTime(_
 ByVal index As Integer _
) As MySqlDateTime

Syntax: C#

public MySqlDateTime GetMySqlDateTime(
intindex
);

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.24. MySqlDataReader.GetName Method

Gets the name of the specified column.

Syntax: Visual Basic

MySqlCommand Class

194

NotOverridable Public Function GetName(_
 ByVal i As Integer _
) As String _
_
 Implements IDataRecord.GetName

Syntax: C#

public string GetName(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetName

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.25. MySqlDataReader.GetOrdinal Method

Gets the column ordinal, given the name of the column.

Syntax: Visual Basic

NotOverridable Public Function GetOrdinal(_
 ByVal name As String _
) As Integer _
_
 Implements IDataRecord.GetOrdinal

Syntax: C#

public int GetOrdinal(
stringname
);

Parameters

• name:

Return Value

Implements

IDataRecord.GetOrdinal

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.26. MySqlDataReader.GetSchemaTable Method

Returns a DataTable that describes the column metadata of the MySqlDataReader.

Syntax: Visual Basic

NotOverridable Public Function GetSchemaTable() As DataTable _
_

MySqlCommand Class

195

 Implements IDataReader.GetSchemaTable

Syntax: C#

public DataTable GetSchemaTable();

Return Value

Implements

IDataReader.GetSchemaTable

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.27. MySqlDataReader.GetString Method

Syntax: Visual Basic

NotOverridable Public Function GetString(_
 ByVal index As Integer _
) As String _
_
 Implements IDataRecord.GetString

Syntax: C#

public string GetString(
intindex
);

Implements

IDataRecord.GetString

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.28. MySqlDataReader.GetTimeSpan Method

Syntax: Visual Basic

Public Function GetTimeSpan(_
 ByVal index As Integer _
) As TimeSpan

Syntax: C#

public TimeSpan GetTimeSpan(
intindex
);

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.29. MySqlDataReader.GetUInt16 Method

Syntax: Visual Basic

Public Function GetUInt16(_
 ByVal index As Integer _
) As UInt16

Syntax: C#

MySqlCommand Class

196

public ushort GetUInt16(
intindex
);

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.30. MySqlDataReader.GetUInt32 Method

Syntax: Visual Basic

Public Function GetUInt32(_
 ByVal index As Integer _
) As UInt32

Syntax: C#

public uint GetUInt32(
intindex
);

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.31. MySqlDataReader.GetUInt64 Method

Syntax: Visual Basic

Public Function GetUInt64(_
 ByVal index As Integer _
) As UInt64

Syntax: C#

public ulong GetUInt64(
intindex
);

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.32. MySqlDataReader.GetValue Method

Gets the value of the specified column in its native format.

Syntax: Visual Basic

NotOverridable Public Function GetValue(_
 ByVal i As Integer _
) As Object _
_
 Implements IDataRecord.GetValue

Syntax: C#

public object GetValue(
inti
);

Parameters

• i:

Return Value

MySqlCommand Class

197

Implements

IDataRecord.GetValue

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.33. MySqlDataReader.GetValues Method

Gets all attribute columns in the collection for the current row.

Syntax: Visual Basic

NotOverridable Public Function GetValues(_
 ByVal values As Object() _
) As Integer _
_
 Implements IDataRecord.GetValues

Syntax: C#

public int GetValues(
object[]values
);

Parameters

• values:

Return Value

Implements

IDataRecord.GetValues

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.34. MySqlDataReader.IsDBNull Method

Gets a value indicating whether the column contains non-existent or missing values.

Syntax: Visual Basic

NotOverridable Public Function IsDBNull(_
 ByVal i As Integer _
) As Boolean _
_
 Implements IDataRecord.IsDBNull

Syntax: C#

public bool IsDBNull(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.IsDBNull

MySqlCommand Class

198

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.35. MySqlDataReader.NextResult Method

Advances the data reader to the next result, when reading the results of batch SQL statements.

Syntax: Visual Basic

NotOverridable Public Function NextResult() As Boolean _
_
 Implements IDataReader.NextResult

Syntax: C#

public bool NextResult();

Return Value

Implements

IDataReader.NextResult

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.1.1.1.36. MySqlDataReader.Read Method

Advances the MySqlDataReader to the next record.

Syntax: Visual Basic

NotOverridable Public Function Read() As Boolean _
_
 Implements IDataReader.Read

Syntax: C#

public bool Read();

Return Value

Implements

IDataReader.Read

See Also

MySqlDataReader Class, MySql.Data.MySqlClient Namespace

8.1.4.1.13.2. MySqlCommand.ExecuteReader Method

Syntax: Visual Basic

Overloads Public Function ExecuteReader(_
 ByVal behavior As CommandBehavior _
) As MySqlDataReader

Syntax: C#

public MySqlDataReader ExecuteReader(
CommandBehaviorbehavior
);

MySqlCommandBuilder Class

199

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand.ExecuteReader
Overload List

8.1.4.1.14. MySqlCommand.ExecuteScalar Method

Syntax: Visual Basic

NotOverridable Public Function ExecuteScalar() As Object _
_
 Implements IDbCommand.ExecuteScalar

Syntax: C#

public object ExecuteScalar();

Implements

IDbCommand.ExecuteScalar

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.4.1.15. MySqlCommand.Prepare Method

Syntax: Visual Basic

NotOverridable Public Sub Prepare() _
_
 Implements IDbCommand.Prepare

Syntax: C#

public void Prepare();

Implements

IDbCommand.Prepare

See Also

MySqlCommand Class, MySql.Data.MySqlClient Namespace

8.1.5. MySqlCommandBuilder Class

For a list of all members of this type, see MySqlCommandBuilder Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlCommandBuilder_
 Inherits Component

Syntax: C#

public sealed class MySqlCommandBuilder : Component

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

MySqlCommandBuilder Class

200

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlCommandBuilder Members, MySql.Data.MySqlClient Namespace

8.1.5.1. MySqlCommandBuilder Members

MySqlCommandBuilder overview

Public Static (Shared) Methods

DeriveParameters Overloaded. Retrieves parameter information
from the stored procedure specified in the
MySqlCommand and populates the Parameters
collection of the specified MySqlCommand object.
This method is not currently supported since
stored procedures are not available in MySql.

Public Instance Constructors

MySqlCommandBuilder Overloaded. Initializes a new instance of the
MySqlCommandBuilder class.

Public Instance Properties

Container (inherited from Component) Gets the IContainer that contains the Component.

DataAdapter

QuotePrefix

QuoteSuffix

Site (inherited from Component) Gets or sets the ISite of the Component.

Public Instance Methods

CreateObjRef (inherited from
MarshalByRefObject)

Creates an object that contains all the relevant
information required to generate a proxy used to
communicate with a remote object.

Dispose (inherited from Component) Releases all resources used by the Component.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetDeleteCommand

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetInsertCommand

GetLifetimeService (inherited from
MarshalByRefObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType (inherited from Object) Gets the Type of the current instance.

GetUpdateCommand

InitializeLifetimeService (inherited from
MarshalByRefObject)

Obtains a lifetime service object to control the
lifetime policy for this instance.

MySqlCommandBuilder Class

201

RefreshSchema

ToString (inherited from Component) Returns a String containing the name of the
Component, if any. This method should not be
overridden.

Public Instance Events

Disposed (inherited from Component) Adds an event handler to listen to the Disposed
event on the component.

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace

8.1.5.1.1. DeriveParameters Method

Retrieves parameter information from the stored procedure specified in the MySqlCommand and
populates the Parameters collection of the specified MySqlCommand object. This method is not
currently supported since stored procedures are not available in MySql.

Overload List

Retrieves parameter information from the stored procedure specified in the MySqlCommand and
populates the Parameters collection of the specified MySqlCommand object. This method is not
currently supported since stored procedures are not available in MySql.

• public static void DeriveParameters(MySqlCommand);

• public static void DeriveParameters(MySqlCommand,bool);

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace

8.1.5.1.1.1. MySqlCommandBuilder.DeriveParameters Method

Retrieves parameter information from the stored procedure specified in the MySqlCommand and
populates the Parameters collection of the specified MySqlCommand object. This method is not
currently supported since stored procedures are not available in MySql.

Syntax: Visual Basic

Overloads Public Shared Sub DeriveParameters(_
 ByVal command As MySqlCommand _
)

Syntax: C#

public static void DeriveParameters(
MySqlCommandcommand
);

Parameters

• command: The MySqlCommand referencing the stored procedure from which the parameter
information is to be derived. The derived parameters are added to the Parameters collection of the
MySqlCommand.

Exceptions

Exception Type Condition

MySqlCommandBuilder Class

202

InvalidOperationException The command text is not a valid stored procedure
name.

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace,
MySqlCommandBuilder.DeriveParameters Overload List

8.1.5.1.1.2. MySqlCommandBuilder.DeriveParameters Method

Syntax: Visual Basic

Overloads Public Shared Sub DeriveParameters(_
 ByVal command As MySqlCommand, _
 ByVal useProc As Boolean _
)

Syntax: C#

public static void DeriveParameters(
MySqlCommandcommand,
booluseProc
);

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace,
MySqlCommandBuilder.DeriveParameters Overload List

8.1.5.1.2. MySqlCommandBuilder Constructor

Initializes a new instance of the MySqlCommandBuilder class.

Overload List

Initializes a new instance of the MySqlCommandBuilder class.

• public MySqlCommandBuilder();

• public MySqlCommandBuilder(MySqlDataAdapter);

• public MySqlCommandBuilder(MySqlDataAdapter,bool);

• public MySqlCommandBuilder(bool);

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.1. MySqlCommandBuilder Constructor

Initializes a new instance of the MySqlCommandBuilder class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlCommandBuilder();

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace, MySqlCommandBuilder
Constructor Overload List

MySqlCommandBuilder Class

203

8.1.5.1.2.2. MySqlCommandBuilder Constructor

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal adapter As MySqlDataAdapter _
)

Syntax: C#

public MySqlCommandBuilder(
MySqlDataAdapteradapter
);

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace, MySqlCommandBuilder
Constructor Overload List

8.1.5.1.2.2.1. MySqlDataAdapter Class

For a list of all members of this type, see MySqlDataAdapter Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlDataAdapter_
 Inherits DbDataAdapter

Syntax: C#

public sealed class MySqlDataAdapter : DbDataAdapter

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlDataAdapter Members, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1. MySqlDataAdapter Members

MySqlDataAdapter overview

Public Instance Constructors

MySqlDataAdapter Overloaded. Initializes a new instance of the
MySqlDataAdapter class.

Public Instance Properties

AcceptChangesDuringFill (inherited from
DataAdapter)

Gets or sets a value indicating whether
AcceptChangesis called on a DataRowafter it
is added to the DataTableduring any of the Fill
operations.

MySqlCommandBuilder Class

204

AcceptChangesDuringUpdate (inherited from
DataAdapter)

Gets or sets whether AcceptChangesis called
during a Update.

Container (inherited from Component) Gets the IContainer that contains the Component.

ContinueUpdateOnError (inherited from
DataAdapter)

Gets or sets a value that specifies whether
to generate an exception when an error is
encountered during a row update.

DeleteCommand Overloaded.

FillLoadOption (inherited from DataAdapter) Gets or sets the LoadOption that determines
how the adapter fills the DataTablefrom the
DbDataReader.

InsertCommand Overloaded.

MissingMappingAction (inherited from
DataAdapter)

Determines the action to take when incoming data
does not have a matching table or column.

MissingSchemaAction (inherited from
DataAdapter)

Determines the action to take when existing
DataSetschema does not match incoming data.

ReturnProviderSpecificTypes (inherited from
DataAdapter)

Gets or sets whether the Fillmethod should
return provider-specific values or common CLS-
compliant values.

SelectCommand Overloaded.

Site (inherited from Component) Gets or sets the ISite of the Component.

TableMappings (inherited from DataAdapter) Gets a collection that provides the master
mapping between a source table and a DataTable.

UpdateBatchSize (inherited from DbDataAdapter) Gets or sets a value that enables or disables
batch processing support, and specifies the
number of commands that can be executed in a
batch.

UpdateCommand Overloaded.

Public Instance Methods

CreateObjRef (inherited from
MarshalByRefObject)

Creates an object that contains all the relevant
information required to generate a proxy used to
communicate with a remote object.

Dispose (inherited from Component) Releases all resources used by the Component.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

Fill (inherited from DbDataAdapter) Overloaded. Adds or refreshes rows in the
DataSetto match those in the data source using
the DataSetname, and creates a DataTablenamed
"Table."

FillSchema (inherited from DbDataAdapter) Overloaded. Configures the schema of the
specified DataTablebased on the specified
SchemaType.

GetFillParameters (inherited from DbDataAdapter) Gets the parameters set by the user when
executing an SQL SELECT statement.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetLifetimeService (inherited from
MarshalByRefObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

http://dev.mysql.com/doc/refman/5.5/en/select.html

MySqlCommandBuilder Class

205

GetType (inherited from Object) Gets the Type of the current instance.

InitializeLifetimeService (inherited from
MarshalByRefObject)

Obtains a lifetime service object to control the
lifetime policy for this instance.

ResetFillLoadOption (inherited from DataAdapter) Resets FillLoadOptionto its default state and
causes Fillto honor AcceptChangesDuringFill.

ShouldSerializeAcceptChangesDuringFill
(inherited from DataAdapter)

Determines whether the
AcceptChangesDuringFillproperty should be
persisted.

ShouldSerializeFillLoadOption (inherited from
DataAdapter)

Determines whether the FillLoadOptionproperty
should be persisted.

ToString (inherited from Component) Returns a String containing the name of the
Component, if any. This method should not be
overridden.

Update (inherited from DbDataAdapter) Overloaded. Calls the respective INSERT,
UPDATE, or DELETE statements for each
inserted, updated, or deleted row in the specified
DataSet.

Public Instance Events

Disposed (inherited from Component) Adds an event handler to listen to the Disposed
event on the component.

FillError (inherited from DataAdapter) Returned when an error occurs during a fill
operation.

RowUpdated Occurs during Update after a command is
executed against the data source. The attempt to
update is made, so the event fires.

RowUpdating Occurs during Update before a command is
executed against the data source. The attempt to
update is made, so the event fires.

Protected Internal Instance Properties

FillCommandBehavior (inherited from
DbDataAdapter)

Gets or sets the behavior of the command used to
fill the data adapter.

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.1. MySqlDataAdapter Constructor

Initializes a new instance of the MySqlDataAdapter class.

Overload List

Initializes a new instance of the MySqlDataAdapter class.

• public MySqlDataAdapter();

• public MySqlDataAdapter(MySqlCommand);

• public MySqlDataAdapter(string,MySqlConnection);

• public MySqlDataAdapter(string,string);

See Also

MySqlCommandBuilder Class

206

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.1.1. MySqlDataAdapter Constructor

Initializes a new instance of the MySqlDataAdapter class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlDataAdapter();

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace, MySqlDataAdapter Constructor
Overload List

8.1.5.1.2.2.1.1.1.2. MySqlDataAdapter Constructor

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal selectCommand As MySqlCommand _
)

Syntax: C#

public MySqlDataAdapter(
MySqlCommandselectCommand
);

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace, MySqlDataAdapter Constructor
Overload List

8.1.5.1.2.2.1.1.1.3. MySqlDataAdapter Constructor

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal selectCommandText As String, _
 ByVal connection As MySqlConnection _
)

Syntax: C#

public MySqlDataAdapter(
stringselectCommandText,
MySqlConnectionconnection
);

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace, MySqlDataAdapter Constructor
Overload List

8.1.5.1.2.2.1.1.1.4. MySqlDataAdapter Constructor

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal selectCommandText As String, _
 ByVal selectConnString As String _

MySqlCommandBuilder Class

207

)

Syntax: C#

public MySqlDataAdapter(
stringselectCommandText,
stringselectConnString
);

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace, MySqlDataAdapter Constructor
Overload List

8.1.5.1.2.2.1.1.2. DeleteCommand Property

Syntax: Visual Basic

Overloads Public Property DeleteCommand As MySqlCommand

Syntax: C#

new public MySqlCommand DeleteCommand {get; set;}

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.3. InsertCommand Property

Syntax: Visual Basic

Overloads Public Property InsertCommand As MySqlCommand

Syntax: C#

new public MySqlCommand InsertCommand {get; set;}

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.4. SelectCommand Property

Syntax: Visual Basic

Overloads Public Property SelectCommand As MySqlCommand

Syntax: C#

new public MySqlCommand SelectCommand {get; set;}

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.5. UpdateCommand Property

Syntax: Visual Basic

Overloads Public Property UpdateCommand As MySqlCommand

Syntax: C#

new public MySqlCommand UpdateCommand {get; set;}

MySqlCommandBuilder Class

208

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.6. MySqlDataAdapter.RowUpdated Event

Occurs during Update after a command is executed against the data source. The attempt to update is
made, so the event fires.

Syntax: Visual Basic

Public Event RowUpdated As MySqlRowUpdatedEventHandler

Syntax: C#

public event MySqlRowUpdatedEventHandler RowUpdated;

Event Data

The event handler receives an argument of type MySqlRowUpdatedEventArgs containing data related
to this event. The following MySqlRowUpdatedEventArgsproperties provide information specific
to this event.

Property Description

Command Gets or sets the MySqlCommand executed when
Update is called.

Errors Gets any errors generated by the .NET
Framework data provider when the Commandwas
executed.

RecordsAffected Gets the number of rows changed, inserted, or
deleted by execution of the SQL statement.

Row Gets the DataRowsent through an Update.

RowCount Gets the number of rows processed in a batch of
updated records.

StatementType Gets the type of SQL statement executed.

Status Gets the UpdateStatus of the Commandproperty.

TableMapping Gets the DataTableMappingsent through an
Update.

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.6.1. MySqlRowUpdatedEventHandler Delegate

Represents the method that will handle the RowUpdatedevent of a MySqlDataAdapter.

Syntax: Visual Basic

Public Delegate Sub MySqlRowUpdatedEventHandler(_
 ByVal sender As Object, _
 ByVal e As MySqlRowUpdatedEventArgs _
)

Syntax: C#

public delegate void MySqlRowUpdatedEventHandler(
objectsender,
MySqlRowUpdatedEventArgs

MySqlCommandBuilder Class

209

);

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.6.1.1. MySqlRowUpdatedEventArgs Class

Provides data for the RowUpdated event. This class cannot be inherited.

For a list of all members of this type, see MySqlRowUpdatedEventArgs Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlRowUpdatedEventArgs_
 Inherits RowUpdatedEventArgs

Syntax: C#

public sealed class MySqlRowUpdatedEventArgs : RowUpdatedEventArgs

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlRowUpdatedEventArgs Members, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.6.1.1.1. MySqlRowUpdatedEventArgs Members

MySqlRowUpdatedEventArgs overview

Public Instance Constructors

MySqlRowUpdatedEventArgs Constructor Initializes a new instance of the
MySqlRowUpdatedEventArgs class.

Public Instance Properties

Command Overloaded. Gets or sets the MySqlCommand
executed when Update is called.

Errors (inherited from RowUpdatedEventArgs) Gets any errors generated by the .NET
Framework data provider when the Commandwas
executed.

RecordsAffected (inherited from
RowUpdatedEventArgs)

Gets the number of rows changed, inserted, or
deleted by execution of the SQL statement.

Row (inherited from RowUpdatedEventArgs) Gets the DataRowsent through an Update.

MySqlCommandBuilder Class

210

RowCount (inherited from RowUpdatedEventArgs) Gets the number of rows processed in a batch of
updated records.

StatementType (inherited from
RowUpdatedEventArgs)

Gets the type of SQL statement executed.

Status (inherited from RowUpdatedEventArgs) Gets the UpdateStatus of the Commandproperty.

TableMapping (inherited from
RowUpdatedEventArgs)

Gets the DataTableMappingsent through an
Update.

Public Instance Methods

CopyToRows (inherited from
RowUpdatedEventArgs)

Overloaded. Copies references to the modified
rows into the provided array.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current
Object.

See Also

MySqlRowUpdatedEventArgs Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.6.1.1.1.1. MySqlRowUpdatedEventArgs Constructor

Initializes a new instance of the MySqlRowUpdatedEventArgs class.

Syntax: Visual Basic

Public Sub New(_
 ByVal row As DataRow, _
 ByVal command As IDbCommand, _
 ByVal statementType As StatementType, _
 ByVal tableMapping As DataTableMapping _
)

Syntax: C#

public MySqlRowUpdatedEventArgs(
DataRowrow,
IDbCommandcommand,
StatementTypestatementType,
DataTableMappingtableMapping
);

Parameters

• row: The DataRowsent through an Update.

• command: The IDbCommand executed when Update is called.

• statementType: One of the StatementTypevalues that specifies the type of query executed.

• tableMapping: The DataTableMapping sent through an Update.

See Also

MySqlRowUpdatedEventArgs Class, MySql.Data.MySqlClient Namespace

MySqlCommandBuilder Class

211

8.1.5.1.2.2.1.1.6.1.1.1.2. Command Property

Gets or sets the MySqlCommand executed when Update is called.

Syntax: Visual Basic

Overloads Public ReadOnly Property Command As MySqlCommand

Syntax: C#

new public MySqlCommand Command {get;}

See Also

MySqlRowUpdatedEventArgs Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.7. MySqlDataAdapter.RowUpdating Event

Occurs during Update before a command is executed against the data source. The attempt to update is
made, so the event fires.

Syntax: Visual Basic

Public Event RowUpdating As MySqlRowUpdatingEventHandler

Syntax: C#

public event MySqlRowUpdatingEventHandler RowUpdating;

Event Data

The event handler receives an argument of type MySqlRowUpdatingEventArgs containing data related
to this event. The following MySqlRowUpdatingEventArgsproperties provide information specific
to this event.

Property Description

Command Gets or sets the MySqlCommand to execute when
performing the Update.

Errors Gets any errors generated by the .NET
Framework data provider when the Command
executes.

Row Gets the DataRow that will be sent to the server
as part of an insert, update, or delete operation.

StatementType Gets the type of SQL statement to execute.

Status Gets or sets the UpdateStatus of the
Commandproperty.

TableMapping Gets the DataTableMapping to send through the
Update.

See Also

MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.7.1. MySqlRowUpdatingEventHandler Delegate

Represents the method that will handle the RowUpdatingevent of a MySqlDataAdapter.

Syntax: Visual Basic

Public Delegate Sub MySqlRowUpdatingEventHandler(_

MySqlCommandBuilder Class

212

 ByVal sender As Object, _
 ByVal e As MySqlRowUpdatingEventArgs _
)

Syntax: C#

public delegate void MySqlRowUpdatingEventHandler(
objectsender,
MySqlRowUpdatingEventArgs
);

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.7.1.1. MySqlRowUpdatingEventArgs Class

Provides data for the RowUpdating event. This class cannot be inherited.

For a list of all members of this type, see MySqlRowUpdatingEventArgs Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlRowUpdatingEventArgs_
 Inherits RowUpdatingEventArgs

Syntax: C#

public sealed class MySqlRowUpdatingEventArgs : RowUpdatingEventArgs

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlRowUpdatingEventArgs Members, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.7.1.1.1. MySqlRowUpdatingEventArgs Members

MySqlRowUpdatingEventArgs overview

Public Instance Constructors

MySqlRowUpdatingEventArgs Constructor Initializes a new instance of the
MySqlRowUpdatingEventArgs class.

Public Instance Properties

Command Overloaded. Gets or sets the MySqlCommand to
execute when performing the Update.

MySqlCommandBuilder Class

213

Errors (inherited from RowUpdatingEventArgs) Gets any errors generated by the .NET
Framework data provider when the Command
executes.

Row (inherited from RowUpdatingEventArgs) Gets the DataRow that will be sent to the server
as part of an insert, update, or delete operation.

StatementType (inherited from
RowUpdatingEventArgs)

Gets the type of SQL statement to execute.

Status (inherited from RowUpdatingEventArgs) Gets or sets the UpdateStatus of the
Commandproperty.

TableMapping (inherited from
RowUpdatingEventArgs)

Gets the DataTableMapping to send through the
Update.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current
Object.

See Also

MySqlRowUpdatingEventArgs Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.7.1.1.1.1. MySqlRowUpdatingEventArgs Constructor

Initializes a new instance of the MySqlRowUpdatingEventArgs class.

Syntax: Visual Basic

Public Sub New(_
 ByVal row As DataRow, _
 ByVal command As IDbCommand, _
 ByVal statementType As StatementType, _
 ByVal tableMapping As DataTableMapping _
)

Syntax: C#

public MySqlRowUpdatingEventArgs(
DataRowrow,
IDbCommandcommand,
StatementTypestatementType,
DataTableMappingtableMapping
);

Parameters

• row: The DataRowto Update.

• command: The IDbCommandto execute during Update.

• statementType: One of the StatementTypevalues that specifies the type of query executed.

• tableMapping: The DataTableMappingsent through an Update.

See Also

MySqlCommandBuilder Class

214

MySqlRowUpdatingEventArgs Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.2.1.1.7.1.1.1.2. Command Property

Gets or sets the MySqlCommand to execute when performing the Update.

Syntax: Visual Basic

Overloads Public Property Command As MySqlCommand

Syntax: C#

new public MySqlCommand Command {get; set;}

See Also

MySqlRowUpdatingEventArgs Class, MySql.Data.MySqlClient Namespace

8.1.5.1.2.3. MySqlCommandBuilder Constructor

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal adapter As MySqlDataAdapter, _
 ByVal lastOneWins As Boolean _
)

Syntax: C#

public MySqlCommandBuilder(
MySqlDataAdapteradapter,
boollastOneWins
);

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace, MySqlCommandBuilder
Constructor Overload List

8.1.5.1.2.4. MySqlCommandBuilder Constructor

Syntax: Visual Basic

Overloads Public Sub New(_
 ByVal lastOneWins As Boolean _
)

Syntax: C#

public MySqlCommandBuilder(
boollastOneWins
);

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace, MySqlCommandBuilder
Constructor Overload List

8.1.5.1.3. DataAdapter Property

Syntax: Visual Basic

Public Property DataAdapter As MySqlDataAdapter

Syntax: C#

public MySqlDataAdapter DataAdapter {get; set;}

MySqlCommandBuilder Class

215

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace

8.1.5.1.4. QuotePrefix Property

Syntax: Visual Basic

Public Property QuotePrefix As String

Syntax: C#

public string QuotePrefix {get; set;}

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace

8.1.5.1.5. QuoteSuffix Property

Syntax: Visual Basic

Public Property QuoteSuffix As String

Syntax: C#

public string QuoteSuffix {get; set;}

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace

8.1.5.1.6. MySqlCommandBuilder.GetDeleteCommand Method

Syntax: Visual Basic

Public Function GetDeleteCommand() As MySqlCommand

Syntax: C#

public MySqlCommand GetDeleteCommand();

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace

8.1.5.1.7. MySqlCommandBuilder.GetInsertCommand Method

Syntax: Visual Basic

Public Function GetInsertCommand() As MySqlCommand

Syntax: C#

public MySqlCommand GetInsertCommand();

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace

8.1.5.1.8. MySqlCommandBuilder.GetUpdateCommand Method

Syntax: Visual Basic

Public Function GetUpdateCommand() As MySqlCommand

MySqlException Class

216

Syntax: C#

public MySqlCommand GetUpdateCommand();

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace

8.1.5.1.9. MySqlCommandBuilder.RefreshSchema Method

Syntax: Visual Basic

Public Sub RefreshSchema()

Syntax: C#

public void RefreshSchema();

See Also

MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace

8.1.6. MySqlException Class

The exception that is thrown when MySQL returns an error. This class cannot be inherited.

For a list of all members of this type, see MySqlException Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlException_
 Inherits SystemException

Syntax: C#

public sealed class MySqlException : SystemException

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlException Members, MySql.Data.MySqlClient Namespace

8.1.6.1. MySqlException Members

MySqlException overview

Public Instance Properties

Data (inherited from Exception) Gets a collection of key/value pairs that provide
additional, user-defined information about the
exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

MySqlHelper Class

217

InnerException (inherited from Exception) Gets the Exceptioninstance that caused the
current exception.

Message (inherited from Exception) Gets a message that describes the current
exception.

Number Gets a number that identifies the type of error.
This number corresponds to the error numbers
given in Server Error Codes and Messages.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Exception) Gets the runtime type of the current instance.

ToString (inherited from Exception) Creates and returns a string representation of the
current exception.

See Also

MySqlException Class, MySql.Data.MySqlClient Namespace

8.1.6.1.1. Number Property

Gets a number that identifies the type of error.

Syntax: Visual Basic

Public ReadOnly Property Number As Integer

Syntax: C#

public int Number {get;}

See Also

MySqlException Class, MySql.Data.MySqlClient Namespace

8.1.7. MySqlHelper Class

Helper class that makes it easier to work with the provider.

http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html

MySqlHelper Class

218

For a list of all members of this type, see MySqlHelper Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlHelper

Syntax: C#

public sealed class MySqlHelper

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlHelper Members, MySql.Data.MySqlClient Namespace

8.1.7.1. MySqlHelper Members

MySqlHelper overview

Public Static (Shared) Methods

ExecuteDataRow Executes a single SQL statement and returns the
first row of the resultset. A new MySqlConnection
object is created, opened, and closed during this
method.

ExecuteDataset Overloaded. Executes a single SQL statement
and returns the resultset in a DataSet. A new
MySqlConnection object is created, opened, and
closed during this method.

ExecuteNonQuery Overloaded. Executes a single command against
a MySQL database. The MySqlConnection is
assumed to be open when the method is called
and remains open after the method completes.

ExecuteReader Overloaded. Executes a single command against
a MySQL database.

ExecuteScalar Overloaded. Execute a single command against a
MySQL database.

UpdateDataSet Updates the given table with data from the given
DataSet

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

MySqlHelper Class

219

ToString (inherited from Object) Returns a String that represents the current
Object.

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace

8.1.7.1.1. MySqlHelper.ExecuteDataRow Method

Executes a single SQL statement and returns the first row of the resultset. A new MySqlConnection
object is created, opened, and closed during this method.

Syntax: Visual Basic

Public Shared Function ExecuteDataRow(_
 ByVal connectionString As String, _
 ByVal commandText As String, _
 ParamArray parms As MySqlParameter() _
) As DataRow

Syntax: C#

public static DataRow ExecuteDataRow(
stringconnectionString,
stringcommandText,
 params MySqlParameter[]parms
);

Parameters

• connectionString: Settings to be used for the connection

• commandText: Command to execute

• parms: Parameters to use for the command

Return Value

DataRow containing the first row of the resultset

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace

8.1.7.1.2. ExecuteDataset Method

Executes a single SQL statement and returns the resultset in a DataSet. The state of the
MySqlConnection object remains unchanged after execution of this method.

Overload List

Executes a single SQL statement and returns the resultset in a DataSet. The state of the
MySqlConnection object remains unchanged after execution of this method.

• public static DataSet ExecuteDataset(MySqlConnection,string);

Executes a single SQL statement and returns the resultset in a DataSet. The state of the
MySqlConnection object remains unchanged after execution of this method.

• public static DataSet ExecuteDataset(MySqlConnection,string,params MySqlParameter[]);

Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection
object is created, opened, and closed during this method.

MySqlHelper Class

220

• public static DataSet ExecuteDataset(string,string);

Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection
object is created, opened, and closed during this method.

• public static DataSet ExecuteDataset(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace

8.1.7.1.2.1. MySqlHelper.ExecuteDataset Method

Executes a single SQL statement and returns the resultset in a DataSet. The state of the
MySqlConnection object remains unchanged after execution of this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset(_
 ByVal connection As MySqlConnection, _
 ByVal commandText As String _
) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
MySqlConnectionconnection,
stringcommandText
);

Parameters

• connection: MySqlConnection object to use

• commandText: Command to execute

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteDataset Overload List

8.1.7.1.2.2. MySqlHelper.ExecuteDataset Method

Executes a single SQL statement and returns the resultset in a DataSet. The state of the
MySqlConnection object remains unchanged after execution of this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset(_
 ByVal connection As MySqlConnection, _
 ByVal commandText As String, _
 ParamArray commandParameters As MySqlParameter() _
) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
MySqlConnectionconnection,
stringcommandText,
 params MySqlParameter[]commandParameters
);

Parameters

MySqlHelper Class

221

• connection: MySqlConnection object to use

• commandText: Command to execute

• commandParameters: Parameters to use for the command

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteDataset Overload List

8.1.7.1.2.3. MySqlHelper.ExecuteDataset Method

Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection
object is created, opened, and closed during this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset(_
 ByVal connectionString As String, _
 ByVal commandText As String _
) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
stringconnectionString,
stringcommandText
);

Parameters

• connectionString: Settings to be used for the connection

• commandText: Command to execute

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteDataset Overload List

8.1.7.1.2.4. MySqlHelper.ExecuteDataset Method

Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection
object is created, opened, and closed during this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset(_
 ByVal connectionString As String, _
 ByVal commandText As String, _
 ParamArray commandParameters As MySqlParameter() _
) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
stringconnectionString,
stringcommandText,
 params MySqlParameter[]commandParameters
);

MySqlHelper Class

222

Parameters

• connectionString: Settings to be used for the connection

• commandText: Command to execute

• commandParameters: Parameters to use for the command

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteDataset Overload List

8.1.7.1.3. ExecuteNonQuery Method

Executes a single command against a MySQL database. The MySqlConnection is assumed to be open
when the method is called and remains open after the method completes.

Overload List

Executes a single command against a MySQL database. The MySqlConnection is assumed to be open
when the method is called and remains open after the method completes.

• public static int ExecuteNonQuery(MySqlConnection,string,params MySqlParameter[]);

Executes a single command against a MySQL database. A new MySqlConnection is created using the
ConnectionString given.

• public static int ExecuteNonQuery(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace

8.1.7.1.3.1. MySqlHelper.ExecuteNonQuery Method

Executes a single command against a MySQL database. The MySqlConnection is assumed to be open
when the method is called and remains open after the method completes.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteNonQuery(_
 ByVal connection As MySqlConnection, _
 ByVal commandText As String, _
 ParamArray commandParameters As MySqlParameter() _
) As Integer

Syntax: C#

public static int ExecuteNonQuery(
MySqlConnectionconnection,
stringcommandText,
 params MySqlParameter[]commandParameters
);

Parameters

• connection: MySqlConnection object to use

• commandText: SQL statement to be executed

• commandParameters: Array of MySqlParameter objects to use with the command.

MySqlHelper Class

223

Return Value

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteNonQuery Overload
List

8.1.7.1.3.2. MySqlHelper.ExecuteNonQuery Method

Executes a single command against a MySQL database. A new MySqlConnection is created using the
ConnectionString given.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteNonQuery(_
 ByVal connectionString As String, _
 ByVal commandText As String, _
 ParamArray parms As MySqlParameter() _
) As Integer

Syntax: C#

public static int ExecuteNonQuery(
stringconnectionString,
stringcommandText,
 params MySqlParameter[]parms
);

Parameters

• connectionString: ConnectionString to use

• commandText: SQL statement to be executed

• parms: Array of MySqlParameter objects to use with the command.

Return Value

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteNonQuery Overload
List

8.1.7.1.4. ExecuteReader Method

Executes a single command against a MySQL database.

Overload List

Executes a single command against a MySQL database.

• public static MySqlDataReader ExecuteReader(string,string);

Executes a single command against a MySQL database.

• public static MySqlDataReader ExecuteReader(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace

8.1.7.1.4.1. MySqlHelper.ExecuteReader Method

Executes a single command against a MySQL database.

MySqlHelper Class

224

Syntax: Visual Basic

Overloads Public Shared Function ExecuteReader(_
 ByVal connectionString As String, _
 ByVal commandText As String _
) As MySqlDataReader

Syntax: C#

public static MySqlDataReader ExecuteReader(
stringconnectionString,
stringcommandText
);

Parameters

• connectionString: Settings to use for this command

• commandText: Command text to use

Return Value

MySqlDataReader object ready to read the results of the command

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteReader Overload List

8.1.7.1.4.2. MySqlHelper.ExecuteReader Method

Executes a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteReader(_
 ByVal connectionString As String, _
 ByVal commandText As String, _
 ParamArray commandParameters As MySqlParameter() _
) As MySqlDataReader

Syntax: C#

public static MySqlDataReader ExecuteReader(
stringconnectionString,
stringcommandText,
 params MySqlParameter[]commandParameters
);

Parameters

• connectionString: Settings to use for this command

• commandText: Command text to use

• commandParameters: Array of MySqlParameter objects to use with the command

Return Value

MySqlDataReader object ready to read the results of the command

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteReader Overload List

8.1.7.1.5. ExecuteScalar Method

Execute a single command against a MySQL database.

MySqlHelper Class

225

Overload List

Execute a single command against a MySQL database.

• public static object ExecuteScalar(MySqlConnection,string);

Execute a single command against a MySQL database.

• public static object ExecuteScalar(MySqlConnection,string,params MySqlParameter[]);

Execute a single command against a MySQL database.

• public static object ExecuteScalar(string,string);

Execute a single command against a MySQL database.

• public static object ExecuteScalar(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace

8.1.7.1.5.1. MySqlHelper.ExecuteScalar Method

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar(_
 ByVal connection As MySqlConnection, _
 ByVal commandText As String _
) As Object

Syntax: C#

public static object ExecuteScalar(
MySqlConnectionconnection,
stringcommandText
);

Parameters

• connection: MySqlConnection object to use

• commandText: Command text to use for the command

Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteScalar Overload List

8.1.7.1.5.2. MySqlHelper.ExecuteScalar Method

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar(_
 ByVal connection As MySqlConnection, _
 ByVal commandText As String, _
 ParamArray commandParameters As MySqlParameter() _
) As Object

MySqlHelper Class

226

Syntax: C#

public static object ExecuteScalar(
MySqlConnectionconnection,
stringcommandText,
 params MySqlParameter[]commandParameters
);

Parameters

• connection: MySqlConnection object to use

• commandText: Command text to use for the command

• commandParameters: Parameters to use for the command

Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteScalar Overload List

8.1.7.1.5.3. MySqlHelper.ExecuteScalar Method

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar(_
 ByVal connectionString As String, _
 ByVal commandText As String _
) As Object

Syntax: C#

public static object ExecuteScalar(
stringconnectionString,
stringcommandText
);

Parameters

• connectionString: Settings to use for the update

• commandText: Command text to use for the update

Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteScalar Overload List

8.1.7.1.5.4. MySqlHelper.ExecuteScalar Method

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar(_
 ByVal connectionString As String, _
 ByVal commandText As String, _
 ParamArray commandParameters As MySqlParameter() _
) As Object

MySqlErrorCode Enumeration

227

Syntax: C#

public static object ExecuteScalar(
stringconnectionString,
stringcommandText,
 params MySqlParameter[]commandParameters
);

Parameters

• connectionString: Settings to use for the command

• commandText: Command text to use for the command

• commandParameters: Parameters to use for the command

Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteScalar Overload List

8.1.7.1.6. MySqlHelper.UpdateDataSet Method

Updates the given table with data from the given DataSet

Syntax: Visual Basic

Public Shared Sub UpdateDataSet(_
 ByVal connectionString As String, _
 ByVal commandText As String, _
 ByVal ds As DataSet, _
 ByVal tablename As String _
)

Syntax: C#

public static void UpdateDataSet(
stringconnectionString,
stringcommandText,
DataSetds,
stringtablename
);

Parameters

• connectionString: Settings to use for the update

• commandText: Command text to use for the update

• ds: DataSetcontaining the new data to use in the update

• tablename: Tablename in the data set to update

See Also

MySqlHelper Class, MySql.Data.MySqlClient Namespace

8.1.8. MySqlErrorCode Enumeration

Syntax: Visual Basic

Public Enum MySqlErrorCode

MySql.Data.Types Namespace

228

Syntax: C#

public enum MySqlErrorCode

Members

Member Name Description

PacketTooLarge

PasswordNotAllowed

DuplicateKeyEntry

HostNotPrivileged

PasswordNoMatch

AnonymousUser

DuplicateKey

KeyNotFound

DuplicateKeyName

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

8.2. MySql.Data.Types Namespace

Namespace hierarchy

Classes

Class Description

MySqlConversionException Summary description for
MySqlConversionException.

MySqlDateTime Summary description for MySqlDateTime.

MySqlValue

8.2.1. MySql.Data.TypesHierarchy

See Also

MySql.Data.Types Namespace

8.2.2. MySqlConversionException Class

Summary description for MySqlConversionException.

For a list of all members of this type, see MySqlConversionException Members .

Syntax: Visual Basic

Public Class MySqlConversionException_
 Inherits ApplicationException

MySqlConversionException Class

229

Syntax: C#

public class MySqlConversionException : ApplicationException

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.Types

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlConversionException Members, MySql.Data.Types Namespace

8.2.2.1. MySqlConversionException Members

MySqlConversionException overview

Public Instance Constructors

MySqlConversionException Constructor Ctor

Public Instance Properties

Data (inherited from Exception) Gets a collection of key/value pairs that provide
additional, user-defined information about the
exception.

HelpLink (inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException (inherited from Exception) Gets the Exceptioninstance that caused the
current exception.

Message (inherited from Exception) Gets a message that describes the current
exception.

Source (inherited from Exception) Gets or sets the name of the application or the
object that causes the error.

StackTrace (inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite (inherited from Exception) Gets the method that throws the current
exception.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetBaseException (inherited from Exception) When overridden in a derived class, returns the
Exception that is the root cause of one or more
subsequent exceptions.

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

MySqlDateTime Class

230

GetObjectData (inherited from Exception) When overridden in a derived class, sets the
SerializationInfo with information about the
exception.

GetType (inherited from Exception) Gets the runtime type of the current instance.

ToString (inherited from Exception) Creates and returns a string representation of the
current exception.

Protected Instance Properties

HResult (inherited from Exception) Gets or sets HRESULT, a coded numeric value
that is assigned to a specific exception.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources
and perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlConversionException Class, MySql.Data.Types Namespace

8.2.2.1.1. MySqlConversionException Constructor

Syntax: Visual Basic

Public Sub New(_
 ByVal msg As String _
)

Syntax: C#

public MySqlConversionException(
stringmsg
);

See Also

MySqlConversionException Class, MySql.Data.Types Namespace

8.2.3. MySqlDateTime Class

Summary description for MySqlDateTime.

For a list of all members of this type, see MySqlDateTime Members .

Syntax: Visual Basic

Public Class MySqlDateTime_
 Inherits MySqlValue_
 Implements IConvertible, IComparable

Syntax: C#

public class MySqlDateTime : MySqlValue, IConvertible, IComparable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

MySqlDateTime Class

231

Requirements

Namespace: MySql.Data.Types

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlDateTime Members, MySql.Data.Types Namespace

8.2.3.1. MySqlDateTime Members

MySqlDateTime overview

Public Static (Shared) Type Conversions

Explicit MySqlDateTime to DateTime Conversion

Public Instance Properties

Day Returns the day portion of this datetime

Hour Returns the hour portion of this datetime

IsNull (inherited from MySqlValue)

IsValidDateTime Indicates if this object contains a value that can be
represented as a DateTime

Minute Returns the minute portion of this datetime

Month Returns the month portion of this datetime

Second Returns the second portion of this datetime

Millisecond Returns the millisecond portion of this datetime

ValueAsObject (inherited from MySqlValue) Returns the value of this field as an object

Year Returns the year portion of this datetime

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetDateTime Returns this value as a DateTime

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Returns a MySQL-specific string representation of
this value

Protected Instance Fields

classType (inherited from MySqlValue) The system type represented by this value

dbType (inherited from MySqlValue) The generic dbtype of this value

isNull (inherited from MySqlValue) Is this value null

mySqlDbType (inherited from MySqlValue) The specific MySQL db type

mySqlTypeName (inherited from MySqlValue) The MySQL-specific typename of this value

objectValue (inherited from MySqlValue)

MySqlDateTime Class

232

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources
and perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

8.2.3.1.1. MySqlDateTime Explicit MySqlDateTime to DateTime Conversion

Syntax: Visual Basic

MySqlDateTime.op_Explicit(val)

Syntax: C#

public static explicit operator DateTime(
MySqlDateTimeval
);

Parameters

• val:

Return Value

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

8.2.3.1.2. Day Property

Returns the day portion of this datetime

Syntax: Visual Basic

Public Property Day As Integer

Syntax: C#

public int Day {get; set;}

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

8.2.3.1.3. Hour Property

Returns the hour portion of this datetime

Syntax: Visual Basic

Public Property Hour As Integer

Syntax: C#

public int Hour {get; set;}

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

MySqlDateTime Class

233

8.2.3.1.4. IsNull Property

Syntax: Visual Basic

Public Property IsNull As Boolean

Syntax: C#

public bool IsNull {get; set;}

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.4.1. MySqlValue Class

For a list of all members of this type, see MySqlValue Members .

Syntax: Visual Basic

MustInherit Public Class MySqlValue

Syntax: C#

public abstract class MySqlValue

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations.
Instance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.Types

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlValue Members, MySql.Data.Types Namespace

8.2.3.1.4.1.1. MySqlValue Members

MySqlValue overview

Protected Static (Shared) Fields

numberFormat

Public Instance Constructors

MySqlValue Constructor Initializes a new instance of the MySqlValue class.

Public Instance Properties

IsNull

ValueAsObject Returns the value of this field as an object

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

MySqlDateTime Class

234

GetHashCode (inherited from Object) Serves as a hash function for a particular type.
GetHashCode is suitable for use in hashing
algorithms and data structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString Returns a string representation of this value

Protected Instance Fields

classType The system type represented by this value

dbType The generic dbtype of this value

isNull Is this value null

mySqlDbType The specific MySQL db type

mySqlTypeName The MySQL-specific typename of this value

objectValue

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources
and perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.4.1.1.1. MySqlValue.numberFormat Field

Syntax: Visual Basic

Protected Shared numberFormat As NumberFormatInfo

Syntax: C#

protected static NumberFormatInfo numberFormat;

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.4.1.1.2. MySqlValue Constructor

Initializes a new instance of the MySqlValue class.

Syntax: Visual Basic

Public Sub New()

Syntax: C#

public MySqlValue();

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.4.1.1.3. ValueAsObject Property

Returns the value of this field as an object

MySqlDateTime Class

235

Syntax: Visual Basic

Public ReadOnly Property ValueAsObject As Object

Syntax: C#

public object ValueAsObject {get;}

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.4.1.1.4. MySqlValue.ToString Method

Returns a string representation of this value

Syntax: Visual Basic

Overrides Public Function ToString() As String

Syntax: C#

public override string ToString();

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.4.1.1.5. MySqlValue.classType Field

The system type represented by this value

Syntax: Visual Basic

Protected classType As Type

Syntax: C#

protected Type classType;

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.4.1.1.6. MySqlValue.dbType Field

The generic dbtype of this value

Syntax: Visual Basic

Protected dbType As DbType

Syntax: C#

protected DbType dbType;

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.4.1.1.7. MySqlValue.mySqlDbType Field

The specific MySQL db type

Syntax: Visual Basic

MySqlDateTime Class

236

Protected mySqlDbType As MySqlDbType

Syntax: C#

protected MySqlDbType mySqlDbType;

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.4.1.1.8. MySqlValue.mySqlTypeName Field

The MySQL-specific typename of this value

Syntax: Visual Basic

Protected mySqlTypeName As String

Syntax: C#

protected string mySqlTypeName;

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.4.1.1.9. MySqlValue.objectValue Field

Syntax: Visual Basic

Protected objectValue As Object

Syntax: C#

protected object objectValue;

See Also

MySqlValue Class, MySql.Data.Types Namespace

8.2.3.1.5. IsValidDateTime Property

Indicates if this object contains a value that can be represented as a DateTime

Syntax: Visual Basic

Public ReadOnly Property IsValidDateTime As Boolean

Syntax: C#

public bool IsValidDateTime {get;}

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

8.2.3.1.6. Millisecond Property

Returns the millisecond portion of this datetime

Syntax: Visual Basic

Public Property Millisecond As Integer

Syntax: C#

MySqlDateTime Class

237

public int Millisecond {get; set;}

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

8.2.3.1.7. Minute Property

Returns the minute portion of this datetime

Syntax: Visual Basic

Public Property Minute As Integer

Syntax: C#

public int Minute {get; set;}

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

8.2.3.1.8. Month Property

Returns the month portion of this datetime

Syntax: Visual Basic

Public Property Month As Integer

Syntax: C#

public int Month {get; set;}

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

8.2.3.1.9. Second Property

Returns the second portion of this datetime

Syntax: Visual Basic

Public Property Second As Integer

Syntax: C#

public int Second {get; set;}

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

8.2.3.1.10. Year Property

Returns the year portion of this datetime

Syntax: Visual Basic

Public Property Year As Integer

Syntax: C#

public int Year {get; set;}

MySqlDateTime Class

238

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

8.2.3.1.11. MySqlDateTime.GetDateTime Method

Returns this value as a DateTime

Syntax: Visual Basic

Public Function GetDateTime() As Date

Syntax: C#

public DateTime GetDateTime();

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

8.2.3.1.12. MySqlDateTime.ToString Method

Returns a MySQL-specific string representation of this value

Syntax: Visual Basic

Overrides Public Function ToString() As String

Syntax: C#

public override string ToString();

See Also

MySqlDateTime Class, MySql.Data.Types Namespace

239

Chapter 9. Connector/Net Support

Table of Contents
9.1. Connector/Net Community Support ... 239
9.2. How to Report Connector/Net Problems or Bugs ... 239
9.3. Connector/Net Change History .. 239

The developers of Connector/Net greatly value the input of our users in the software development
process. If you find Connector/Net lacking some feature important to you, or if you discover a bug and
need to file a bug report, please use the instructions in How to Report Bugs or Problems.

9.1. Connector/Net Community Support

• Community support for Connector/Net can be found through the forums at http://forums.mysql.com.

• Community support for Connector/Net can also be found through the mailing lists at http://
lists.mysql.com.

• Paid support is available from Oracle. Additional information is available at http://dev.mysql.com/
support/.

9.2. How to Report Connector/Net Problems or Bugs

If you encounter difficulties or problems with Connector/Net, contact the Connector/Net community, as
explained in Section 9.1, “Connector/Net Community Support”.

First try to execute the same SQL statements and commands from the mysql client program or from
admndemo. This helps you determine whether the error is in Connector/Net or MySQL.

If reporting a problem, ideally include the following information with the email:

• Operating system and version.

• Connector/Net version.

• MySQL server version.

• Copies of error messages or other unexpected output.

• Simple reproducible sample.

Remember that the more information you can supply to us, the more likely it is that we can fix the
problem.

If you believe the problem to be a bug, then you must report the bug through http://bugs.mysql.com/.

9.3. Connector/Net Change History

The Connector/Net Change History (Changelog) is located with the main Changelog for MySQL. See
Appendix A, MySQL Connector/Net Change History.

http://dev.mysql.com/doc/refman/5.5/en/bug-reports.html
http://forums.mysql.com
http://lists.mysql.com
http://lists.mysql.com
http://dev.mysql.com/support/
http://dev.mysql.com/support/
http://bugs.mysql.com/

240

241

Appendix A. MySQL Connector/Net Change History

Table of Contents
A.1. Changes in MySQL Connector/Net Version 6.6 ... 243
A.2. Changes in MySQL Connector/Net Version 6.5 ... 245
A.3. Changes in MySQL Connector/Net Version 6.4 ... 247

A.3.1. Changes in MySQL Connector/Net 6.4.6 (2012-11-26) .. 247
A.3.2. Changes in MySQL Connector/Net 6.4.5 (2012-05-19) .. 249
A.3.3. Changes in MySQL Connector/Net 6.4.4 (2011-09-26) .. 250
A.3.4. Changes in MySQL Connector/Net 6.4.3 (2011-07-03) .. 251
A.3.5. Changes in MySQL Connector/Net 6.4.2 (2011-06-29) .. 251
A.3.6. Changes in MySQL Connector/Net 6.4.1 (2011-06-06, Alpha) 251
A.3.7. Changes in MySQL Connector/Net 6.4.0 (Unknown) ... 251

A.4. Changes in MySQL Connector/Net Version 6.3 ... 251
A.4.1. Changes in MySQL Connector/Net 6.3.9 (2012-04-11) .. 251
A.4.2. Changes in MySQL Connector/Net 6.3.8 (2011-12-16) .. 253
A.4.3. Changes in MySQL Connector/Net 6.3.7 (2011-06-22) .. 255
A.4.4. Changes in MySQL Connector/Net 6.3.6 (2011-01-03) .. 255
A.4.5. Changes in MySQL Connector/Net 6.3.5 (2010-10-12) .. 257
A.4.6. Changes in MySQL Connector/Net 6.3.4 (2010-09-01, Generally Available) 257
A.4.7. Changes in MySQL Connector/Net 6.3.3 (2010-07-27) .. 258
A.4.8. Changes in MySQL Connector/Net 6.3.2 (2010-05-24, Beta) 260
A.4.9. Changes in MySQL Connector/Net 6.3.1 (2010-03-02) .. 261
A.4.10. Changes in MySQL Connector/Net 6.3.0 (2010-02-16, Alpha) 262

A.5. Changes in MySQL Connector/Net Version 6.2 ... 262
A.5.1. Changes in MySQL Connector/Net 6.2.6 (Not yet released) 262
A.5.2. Changes in MySQL Connector/Net 6.2.5 (2011-07-01) .. 262
A.5.3. Changes in MySQL Connector/Net 6.2.4 (2010-08-30) .. 264
A.5.4. Changes in MySQL Connector/Net 6.2.3 (2010-04-10) .. 267
A.5.5. Changes in MySQL Connector/Net 6.2.2 (2009-12-22, Generally Available) 268
A.5.6. Changes in MySQL Connector/Net 6.2.1 (2009-11-16, Beta) 269
A.5.7. Changes in MySQL Connector/Net 6.2.0 (2009-10-21, Alpha) 270

A.6. Changes in MySQL Connector/Net Version 6.1 ... 271
A.6.1. Changes in MySQL Connector/Net 6.1.7 (Not released, Generally Available) 271
A.6.2. Changes in MySQL Connector/Net 6.1.6 (Not released, Generally Available) 271
A.6.3. Changes in MySQL Connector/Net 6.1.5 (2010-08-30, Generally Available) 271
A.6.4. Changes in MySQL Connector/Net 6.1.4 (2010-04-28, Generally Available) 273
A.6.5. Changes in MySQL Connector/Net 6.1.3 (2009-11-16, Generally Available) 275
A.6.6. Changes in MySQL Connector/Net 6.1.2 (2009-09-08, Generally Available) 276
A.6.7. Changes in MySQL Connector/Net 6.1.1 (2009-08-20, Beta) 277
A.6.8. Changes in MySQL Connector/Net 6.1.0 (2009-07-15, Alpha) 279

A.7. Changes in MySQL Connector/Net Version 6.0 ... 280
A.7.1. Changes in MySQL Connector/Net 6.0.8 (Not released) .. 280
A.7.2. Changes in MySQL Connector/Net 6.0.7 (2010-08-30) .. 280
A.7.3. Changes in MySQL Connector/Net 6.0.6 (2010-04-28) .. 281
A.7.4. Changes in MySQL Connector/Net 6.0.5 (2009-11-12) .. 283
A.7.5. Changes in MySQL Connector/Net 6.0.4 (2009-06-16) .. 288
A.7.6. Changes in MySQL Connector/Net 6.0.3 (2009-04-28) .. 289
A.7.7. Changes in MySQL Connector/Net 6.0.2 (2009-04-07, Beta) 290
A.7.8. Changes in MySQL Connector/Net 6.0.1 (2009-04-02, Beta) 290
A.7.9. Changes in MySQL Connector/Net 6.0.0 (2009-03-02, Alpha) 290

A.8. Changes in MySQL Connector/Net Version 5.3 ... 290
A.8.1. Changes in MySQL Connector/Net 5.3.0 (Not released) .. 290

A.9. Changes in MySQL Connector/Net Version 5.2 ... 290
A.9.1. Changes in MySQL Connector/Net 5.2.8 (Not released) .. 290

242

A.9.2. Changes in MySQL Connector/Net 5.2.7 (2009-07-15) .. 290
A.9.3. Changes in MySQL Connector/Net 5.2.6 (2009-04-28) .. 291
A.9.4. Changes in MySQL Connector/Net 5.2.5 (2008-11-19) .. 293
A.9.5. Changes in MySQL Connector/Net 5.2.4 (2008-11-13) .. 293
A.9.6. Changes in MySQL Connector/Net 5.2.3 (2008-08-19) .. 294
A.9.7. Changes in MySQL Connector/Net 5.2.2 (2008-05-12) .. 295
A.9.8. Changes in MySQL Connector/Net 5.2.1 (2008-02-27) .. 296
A.9.9. Changes in MySQL Connector/Net 5.2.0 (2008-02-11) .. 296

A.10. Changes in MySQL Connector/Net Version 5.1 ... 297
A.10.1. Changes in MySQL Connector/Net 5.1.8 (Not released) .. 297
A.10.2. Changes in MySQL Connector/Net 5.1.7 (2008-08-21) .. 297
A.10.3. Changes in MySQL Connector/Net 5.1.6 (2008-05-12) .. 298
A.10.4. Changes in MySQL Connector/Net 5.1.5 (Not released) .. 299
A.10.5. Changes in MySQL Connector/Net 5.1.4 (2007-11-20) .. 299
A.10.6. Changes in MySQL Connector/Net 5.1.3 (2007-09-21, Beta) 300
A.10.7. Changes in MySQL Connector/Net 5.1.2 (2007-06-18) .. 301
A.10.8. Changes in MySQL Connector/Net 5.1.1 (2007-05-23) .. 301
A.10.9. Changes in MySQL Connector/Net 5.1.0 (2007-05-01) .. 301

A.11. Changes in MySQL Connector/Net Version 5.0 ... 302
A.11.1. Changes in MySQL Connector/Net 5.0.10 (Not released) ... 302
A.11.2. Changes in MySQL Connector/Net 5.0.9 (Not released) .. 302
A.11.3. Changes in MySQL Connector/Net 5.0.8 (2007-08-21) .. 302
A.11.4. Changes in MySQL Connector/Net 5.0.7 (2007-05-18) .. 303
A.11.5. Changes in MySQL Connector/Net 5.0.6 (2007-03-22) .. 303
A.11.6. Changes in MySQL Connector/Net 5.0.5 (2007-03-07) .. 304
A.11.7. Changes in MySQL Connector/Net 5.0.4 (Not released) .. 305
A.11.8. Changes in MySQL Connector/Net 5.0.3 (2007-01-05) .. 305
A.11.9. Changes in MySQL Connector/Net 5.0.2 (2006-11-06) .. 306
A.11.10. Changes in MySQL Connector/Net 5.0.1 (2006-10-01) .. 307
A.11.11. Changes in MySQL Connector/Net 5.0.0 (2006-08-08) .. 307

A.12. Changes in MySQL Connector/Net Version 1.0 ... 308
A.12.1. Changes in MySQL Connector/Net 1.0.11 (Not released) ... 308
A.12.2. Changes in MySQL Connector/Net 1.0.10 (2007-08-24) .. 308
A.12.3. Changes in MySQL Connector/Net 1.0.9 (2007-02-02) .. 308
A.12.4. Changes in MySQL Connector/Net 1.0.8 (2006-10-20) .. 310
A.12.5. Changes in MySQL Connector/Net 1.0.7 (2005-11-21) .. 311
A.12.6. Changes in MySQL Connector/Net 1.0.6 (2005-10-03) .. 311
A.12.7. Changes in MySQL Connector/Net 1.0.5 (2005-08-29) .. 312
A.12.8. Changes in MySQL Connector/Net 1.0.4 (2005-01-20) .. 312
A.12.9. Changes in MySQL Connector/Net 1.0.3 (2004-10-12, gamma) 313
A.12.10. Changes in MySQL Connector/Net 1.0.2 (2004-11-15, gamma) 314
A.12.11. Changes in MySQL Connector/Net 1.0.1 (2004-10-27, Beta) 314
A.12.12. Changes in MySQL Connector/Net 1.0.0 (2004-09-01) .. 315

A.13. Changes in MySQL Connector/Net Version 0.9.0 (30 August 2004) 316
A.14. Changes in MySQL Connector/Net Version 0.76 .. 319
A.15. Changes in MySQL Connector/Net Version 0.75 .. 320
A.16. Changes in MySQL Connector/Net Version 0.74 .. 320
A.17. Changes in MySQL Connector/Net Version 0.71 .. 322
A.18. Changes in MySQL Connector/Net Version 0.70 .. 322
A.19. Changes in MySQL Connector/Net Version 0.68 .. 324
A.20. Changes in MySQL Connector/Net Version 0.65 .. 325
A.21. Changes in MySQL Connector/Net Version 0.60 .. 325
A.22. Changes in MySQL Connector/Net Version 0.50 .. 325

Changes in MySQL Connector/Net Version 6.6

243

A.1. Changes in MySQL Connector/Net Version 6.6

Changes in MySQL Connector/Net 6.6.4 (2012-10-19, GA)

Changes in MySQL Connector/Net 6.6.3 (2012-09-28, Beta)

Changes in MySQL Connector/Net 6.6.2 (August 2012, Beta)

Continued improvements and fixes to the 6.6 feature set.

Stored Procedure Debugging

• This beta release removes several of the earlier limitations on stored procedure debugging:

• Functions and triggers can now be debugged.

• Intellisense is enabled in the debugger window.

• The debugger supports the SQL grammar for all MySQL versions from 5.0 to 5.6.

• When a debugging session is finished, stored routines that were instrumented are now restored to
their original form.

• You can now evaluate and change session variables, in addition to local variables in the
procedure.

• Conditional breakpoints are supported now.

• When debugging a routine that has parameters, the debugger prompts for values to use for the
parameters. These prompted values no longer overwrite session variables that have the same
names.

• You do not need to check the Save password checkbox when creating a new connection in
Server Explorer.

These limitations remain:

• Some MySQL functions cannot be debugged currently (get_lock, release_lock, begin,
commit, rollback, set transaction level).

• Only one debug session may be active on a given server.

Changes in MySQL Connector/Net 6.6.1 (2012-08-08, Alpha)

Continued improvements and fixes to the 6.6 feature set.

Version 6.6.1 has no changelog entries.

Changes in MySQL Connector/Net 6.6.0 (2012-07-17, Alpha)

First alpha release for Connector/NET 6.6. Major features of Connector/Net 6.6:

• Stored procedure debugging in Microsoft Visual Studio.

• Entity Framework 4.3 Code First support.

• Pluggable authentication (not available in this alpha).

Entity Framework Code First Support

• To support the Entity Framework 4.3.1, Connector/Net can now use the Code First approach when
developing against a model, and keep track of the changes in the Entity Model and in the Database.

Changes in MySQL Connector/Net 6.6.0 (2012-07-17, Alpha)

244

This new Entity Framework 4.3.1 feature is focused in allowing your database to be updated along
with your Code First Model changes.

Stored Procedure Debugging

• The Connector/Net integration with Visual Studio now includes stored procedure debugging. It works
in a very intuitive manner, by simply clicking Debug Routine from Server Explorer. The limitations in
this preliminary alpha release include:

• Can only debug stored procedures. Functions and triggers cannot be debugged yet.

• Intellisense is currently not enabled in the debugger window.

• Some MySQL functions cannot be debugged currently (get_lock, release_lock, begin,
commit, rollback, set transaction level).

• Only 5.1 grammar is currently supported.

• Only one debug session may be active on a given server.

• The debugger instruments your procedures automatically. The original procedure might not be not
restored correctly.

• Evaluating and changing session variables are not supported. Local variables in the procedure are
supported.

• Conditional breakpoints are not supported.

• When debugging a routine that has parameters, the debugger will prompt for those values. It will
create session variables out of them, so be careful to not use your own session variables that have
the same name.

• When creating a new connection in Server Explorer, please check the Save password checkbox.

Bugs Fixed

• When using Entity Framework with Connector/Net, the association property OnDelete was not
taken into account in the CreateDatabaseScript function of the ObjectContext, leading to
an error message System.Data.UpdateException was unhandled. The SQL generated by
the CreateDatabaseScript function was missing ON DELETE and ON UPDATE clauses. These
clauses were filled in correctly by the DDL generation wizard. (Bug #14008752, Bug #64779)

• A call to a stored procedure or function in an application using the Code First entity framework could
result in an error:

Unhandled Exception: MySql.Data.MySqlClient.MySqlException: You have an error
in your SQL syntax; ...

The code change allows syntax such as the following to invoke a stored procedure, without using the
CALL statement and without using CommandType.StoredProcedure.

int count = myContext.Database.SqlQuery<int>("GetCount").First();

(Bug #14008699, Bug #64999)

• When using the Entity Framework Code First approach, the generated code could be incorrect:

• Missing length specifier for data types, such as VARBINARY instead of VARBINARY(n).

• ALTER TABLE statements referring to nonexistent tables, when private members were specified
inside the main class.

(Bug #13900091, Bug #64216)

http://dev.mysql.com/doc/refman/5.5/en/call.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html

Changes in MySQL Connector/Net Version 6.5

245

A.2. Changes in MySQL Connector/Net Version 6.5

Changes in MySQL Connector/Net 6.5.5 (Not yet released.)

Version 6.5.5 has no changelog entries.

Changes in MySQL Connector/Net 6.5.4 (2012-03-08)

First GA release for Connector/NET 6.5.

Bugs Fixed

• In Visual Studio Table Designer, if you tried to save a new table using an existing table name,
subsequently you would not be prompted to choose a new name, preventing you from saving the
table. (Bug #13785918)

• When creating a Visual Studio Web Application Project, using the ADO.NET Entity Data Model and
generating the model from a database, the Entity Framework Model was not created. This operation
gave an error:

Access denied for user 'root'@'localhost' (using password: NO)

(Bug #13610452)

• When creating a project in VisualStudio using a .NET framework such as 3.0 or 3.5 (anything less
than 4.0), the Connector/Net library (MySql.Data.dll) was not listed in the Add References
dialog box. The workaround was to browse to the library and add it manually. (Bug #13491678, Bug
#60462)

Changes in MySQL Connector/Net 6.5.3 (2012-02-27)

Second Release Candidate (RC) release.

Bugs Fixed

• The performance when setting the CommandText property on the MySqlCommand class was
improved by enhancing the efficiency of a string comparison operation. (Bug #13739383, Bug
#64012)

• Fixed MySqlTime parsing to avoid throwing an exception when handling milliseconds (as result of a
timediff operation). (Bug #13708884, Bug #64268)

• In Visual Studio Table Designer, when adding a second foreign key, the new name was incorrectly
assigned to the first foreign key in the list. (Bug #13613824)

• In Visual Studio Table Designer, changes to a field were sometimes not detected until you switched
focus away from that field. (Bug #13613755)

Changes in MySQL Connector/Net 6.5.2 (2012-02-15)

First Release Candidate (RC) release.

Bugs Fixed

• In Visual Studio Table Designer, when editing a foreign key relationship, choosing a column name on
the left side made that column name unavailable on the right side. (Bug #13615258)

• In Visual Studio Table Designer, an error could occur if you added and deleted column information
for foreign keys in a particular sequence. (Bug #13610235)

• In Visual Studio Table Designer, deleting a foreign key relationship in the Relationship dialog
required clicking twice. (Bug #13610283)

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key

Changes in MySQL Connector/Net 6.5.1 (2012-01-23)

246

• In Visual Studio Table Designer, modifying the Columns field in the Indexes/Keys dialog multiple
times could cause an error. (Bug #13613765)

• In Visual Studio Table Designer, it was possible to save a new foreign key relationship without filling
in the fields of the Foreign Key Relationship dialog. (Bug #13613839)

• In Visual Studio Table Designer, changing the length of a VARCHAR field could cause an error. (Bug
#13611677)

• If MySqlCommand.CommandText was equal to null, then MySqlCommand.ExecuteReader()
would throw the wrong exception: NullReferenceException instead of
InvalidOperationException. (Bug #13624659, Bug #64092)

• When using connection pooling, the connections in the pool were not automatically
closed upon application exit. With the setting log-warnings=2, you could encounter
Aborted connection errors in the MySQL error log. The workaround was to explicitly call
MySql.Data.MySqlClient.MySqlConnection.ClearAllPools(); upon exiting the
application. (Bug #13629471, Bug #63942)

• The MySQL script generated by using the function CreateDatabaseScript used names with
incorrect singular/plural forms. (Bug #13582837, Bug #62150)

• In Visual Studio Table Designer, the Add -> Function Import... dialog could close prematurely when
you pressed the Get Column Information button. (Bug #13511736)

• When designating a primary key for a table in Table Designer, the key icon could fail to appear until
the Table Designer was restarted. (Bug #13481246)

Changes in MySQL Connector/Net 6.5.1 (2012-01-23)

Second beta release.

Bugs Fixed

• In Table Designer for Visual Studio, trying to delete foreign keys from an InnoDB table showed an
error, and the change was not saved. (Bug #13481362)

• After an UPDATE statement, Connector/Net would generate incorrect SELECT SQL statements if a
value in the WHERE clause was not also present in the SET clause of the UPDATE. (Bug #13491689,
Bug #62134)

• IntelliSense would emit an error when the "-" (minus) character was typed. (Bug #13522344)

Changes in MySQL Connector/Net 6.5.0 (2011-12-22)

First beta release.

Functionality Added or Changed

• Added better IntelliSense support, including auto-completion when editing stored procedures or
.mysql files. For more information, see Section 4.2, “Using IntelliSense in the SQL Editor”.

• Adds a MySqlClientPermission class to help users define the security policies for the database
connections within any application using a MySQL database.

• Added better partial-trust support, thus allowing Connector/NET to run in a partial trust scenario. It
will work correctly in a medium-trust level environment when the library is installed in the GAC. For
more information, see Section 6.19, “Working with Partial Trust / Medium Trust”.

• Added fractional seconds support, as per MySQL Server 5.6 and above. For more information, see
Fractional Seconds in Time Values

• Added “interceptor” classes for exceptions and commands. For more information, see Section 6.11,
“Using the Connector/Net Interceptor Classes”.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/fractional-seconds.html

Changes in MySQL Connector/Net Version 6.4

247

Bugs Fixed

• The MySqlDataReader.GetDateTime() method was not recognizing that TIMESTAMP values
had already been converted to the local time zone of the MySQL server, which could cause incorrect
results if the value was later processed through the ToLocalTime() method. The fix causes
the Kind property to be correctly set to Local rather than Unspecified. (Bug #13591554, Bug
#63812)

• Visual Studio 2010 Table Designer could give an error “Object reference not set to an instance of
an object” for schemas with certain combinations of column names and foreign key references. The
SQL syntax was incorrect for the ALTER TABLE statement generated by the Table Designer. (Bug
#13591545, Bug #63714)

A.3. Changes in MySQL Connector/Net Version 6.4

A.3.1. Changes in MySQL Connector/Net 6.4.6 (2012-11-26)

This release fixes bugs since 6.4.5.

Bugs Fixed

• Under some circumstances, setting CacheServerProperties=true in the connection
string could cause a Packet too large error. With connection pooling enabled and
CacheServerProperties=true, the first connection worked as expected, but the second, third,
and so on connections would fail if the query exceeded 1024 bytes. (Bug #14593547, Bug #66578)

• Connector/Net did not support creating an entity with a key of type string. During database
creation, a MySqlException was thrown saying BLOB/TEXT column 'Name' used in
key specification without a key length. The DDL produced by the provider specified
a MEDIUMTEXT column for the primary key without specifying a length for the key. This fix is
particularly important when working with Entity Framework versions 4.3 and later, since the
__MigrationsHitory table (which replaces the EdmMetadata table) uses a string property as its
key. (Bug #14540202, Bug #65289, Bug #64288)

• The ExecuteNonQuery() could return an error Parameter '?' must be defined, when
attempting to execute a statement such as:

insert into table_name (Field1, Field1) VALUES(?,?)

That is, when referencing the same field twice with two different ? placeholders. (Bug #14499549,
Bug #66060)

• Customizing precision by calling the HasPrecision() method within the OnModelCreating()
method in a Code First project would always produce precision settings (10,2) rather than the
specified precision. (Bug #14469048, Bug #65001)

• The MySQL Connector/Net EntityFramework provider would throw NullReferenceException
when trying to insert a new record with an empty VALUES clause. Such an INSERT should work
when the only required (NOT NULL) column in the table is a primary key auto-increment column.
(Bug #14479715, Bug #66066)

• When building commands through the MySql.Data.MySqlClient.MySqlCommand() class,
memory could be leaked because some IO.MemoryStream instances were not being freed
efficiently. The memory leak could be an issue in SQL-heavy applications, for example a logging
application processing large numbers of INSERT statements. (Bug #14468204, Bug #65696)

• Using the Entity Data Model Designer decimal type and CreateDatabase function, the values
were stored with 0 digits at the right of the decimal point. With this fix, the default is 2 digits to the
right of the decimal point, and any precision specified through the Entity Data Model Designer is
applied correctly. (Bug #14474342, Bug #65127)

http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Changes in MySQL Connector/Net 6.4.6 (2012-11-26)

248

• When using a MySQL database set up as UTF32 as an ASP.net membership database, web
applications could give a “key too long” error, and the Website Administration Tool would not connect
to providers. The cause was that the column my_aspnet_sessions.SessionId, when converted
from Latin1 character set to UTF32 with 4 bytes per character, exceeded the length limit for a
primary key:

Specified key was too long; max key length is 767 bytes

(Bug #14495292, Bug #65144)

• When using the ASP.net web security functionality with a MySQL database, using features that
access the my_aspnet_usersinroles table caused an exception:

MySql.Data.MySqlClient.MySqlException: Table 'testdb.my_aspnet_usersinrole' doesn't exist.

For example, this error could occur when trying to remove the user from a role or find users in a role.
The fix corrects the spelling of the table name to my_aspnet_usersinroles. (Bug #14405338,
Bug #65805)

• Although the member variable MySqlCommand.LastInsertedId was a 64-bit long, its value was
effectively capped at the maximum value of Int32 (2,147,483,647). If a primary key exceeded this
value, the value of LastInsertedId was wrong. This mismatch could be an issue for tables with
large numbers of rows. (Bug #14171960, Bug #65452)

• When using Entity Framework with Connector/Net, the association property OnDelete was not
taken into account in the CreateDatabaseScript function of the ObjectContext, leading to
an error message System.Data.UpdateException was unhandled. The SQL generated by
the CreateDatabaseScript function was missing ON DELETE and ON UPDATE clauses. These
clauses were filled in correctly by the DDL generation wizard. (Bug #14008752, Bug #64779)

• A call to a stored procedure or function in an application using the Code First entity framework could
result in an error:

Unhandled Exception: MySql.Data.MySqlClient.MySqlException: You have an error
in your SQL syntax; ...

The code change allows syntax such as the following to invoke a stored procedure, without using the
CALL statement and without using CommandType.StoredProcedure.

int count = myContext.Database.SqlQuery<int>("GetCount").First();

(Bug #14008699, Bug #64999)

• When using the Entity Framework Code First approach, the generated code could be incorrect:

• Missing length specifier for data types, such as VARBINARY instead of VARBINARY(n).

• ALTER TABLE statements referring to nonexistent tables, when private members were specified
inside the main class.

(Bug #13900091, Bug #64216)

• When using the MySqlProfileProvider, calling the function
ProfileManager.DeleteProfiles could throw an InvalidCastException exception. (Bug
#13790123, Bug #64470)

• In Visual Studio Table Designer, the name of a new index was always derived from the name of the
table and could not be changed. (Bug #13613801)

• When using the Entity Framework Code First approach, the generated code could be use the
MEDIUMTEXT data type in contexts where other types such as VARCHAR were more appropriate,
leading to errors such as:

error 0064: Facet 'MaxLength' must not be specified for type 'mediumtext'.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.5/en/call.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/char.html

Changes in MySQL Connector/Net 6.4.5 (2012-05-19)

249

(Bug #13582335, Bug #63920)

A.3.2. Changes in MySQL Connector/Net 6.4.5 (2012-05-19)

This release fixes bugs since 6.4.4.

Bugs Fixed

• When the length of a VARCHAR column was edited in Table Designer, the data type could be saved
incorrectly as BIT. (Bug #13916560)

• Any sequence of Take(n) method calls followed by Count or LongCount would cause a
System.Data.EntityCommandCompilationException error. (Bug #13913047, Bug #64749)

• The performance when setting the CommandText property on the MySqlCommand class was
improved by enhancing the efficiency of a string comparison operation. (Bug #13739383, Bug
#64012)

• In Visual Studio Table Designer, if you tried to save a new table using an existing table name,
subsequently you would not be prompted to choose a new name, preventing you from saving the
table. (Bug #13785918)

• The MySQL script generated by using the function CreateDatabaseScript used names with
incorrect singular/plural forms. (Bug #13582837, Bug #62150)

• Visual Studio 2010 Table Designer could give an error “Object reference not set to an instance of
an object” for schemas with certain combinations of column names and foreign key references. The
SQL syntax was incorrect for the ALTER TABLE statement generated by the Table Designer. (Bug
#13591545, Bug #63714)

• In Table Designer for Visual Studio, trying to create a table could fail if you saved changes
immediately after entering the data type for a column. The workaround was to click somewhere else
in the grid before saving changes. (Bug #13477805)

• Creating a table through the Server Explorer Window on Visual Studio 2010 could fail with a MySQL
syntax error. The properties in the CREATE TABLE statement could be listed in incorrect order. (Bug
#13475830)

• In Table Designer for Visual Studio, trying to delete foreign keys from an InnoDB table showed an
error, and the change was not saved. (Bug #13481362)

• In “LINQ to Entity” queries, including a child entity (1-n) and its entities (n-n) returned the wrong
results. For example:

db.Authors.Include("Books.Editions").AsEnumerable().First();

(Bug #13491698, Bug #62801)

• When creating a project in VisualStudio using a .NET framework such as 3.0 or 3.5 (anything less
than 4.0), the Connector/Net library (MySql.Data.dll) was not listed in the Add References
dialog box. The workaround was to browse to the library and add it manually. (Bug #13491678, Bug
#60462)

• After an UPDATE statement, Connector/Net would generate incorrect SELECT SQL statements if a
value in the WHERE clause was not also present in the SET clause of the UPDATE. (Bug #13491689,
Bug #62134)

• Formerly, cleanup operations for expired sessions were fully automatic, with no
ability to catch the timeout event and do application-specific cleanup. This fix adds
a enableSessionExpireCallback connection option to let developers catch the
event when a session expires. When enableSessionExpireCallback is enabled,

http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/select.html

Changes in MySQL Connector/Net 6.4.4 (2011-09-26)

250

the global.asax.session_end event is raised before data is deleted from the
my_aspnet_sessions table. When enableSessionExpireCallback is disabled, the data is
deleted from the my_aspnet_sessions table without raising the event first. The timeout period for
session expiry is specified in the web.config file, in the timeout option of the sessionState
section. (Bug #13354935, Bug #62266)

• Connector/NET experienced poor performance when adding parameters to the MySQLCommand.
(Bug #62653, Bug #13331475)

• The Unicode quotation mark character U+0022 was not escaped by the MySQLHelper class. (Bug
#62585, Bug #13092886)

• Using a return parameter without a name resulted in an IndexOutOfRangeException exception.
(Bug #62416, Bug #13006969)

• The Mono runtime did not support hashed passwords. (Bug #62203, Bug #13041618)

• Connector/NET incorrectly maps PrimitiveTypeKind.Byte to tinyint, instead of utinyint.
And PrimitiveTypeKind.SByte mapping was added, to tinyint. (Bug #62135, Bug
#13061713)

• Connector/NET would incorrectly map decimal values to ANSI strings. (Bug #62246, Bug
#13050570)

A.3.3. Changes in MySQL Connector/Net 6.4.4 (2011-09-26)

This release fixes bugs since 6.4.3.

Functionality Added or Changed

• Connector/Net now enables clients to connect to the server through accounts that use Windows
native authentication. For more information, see Section 6.5, “Using the Windows Native
Authentication Plugin” and The Windows Native Authentication Plugin.

Bugs Fixed

• (Bug #12897149)

• When creating a tableadapter through a Dataset form in Visual Studio, the MaxLength of the field
for a CHAR column could be set to 3 times the length of the table column. Although this many bytes
could be needed to hold a UTF-8 character value, the length value was not appropriate for restricting
the length of a TextBox. (Bug #12860224, Bug #62094)

• When adding a MEDIUMTEXT or LONGTEXT column Visual Studio, the facet Fixed length had to
be set to false, even though these types allow arbitrary lengths. (Bug #12848277, Bug #54915)

• An error out of sync with server could occur when connecting in the Visual Studio Entity
Framework. The issue occurred only on some MySQL servers, all with versions earlier than MySQL
5.5. (Bug #12853286, Bug #61806)

• Using a combination of ListView, EntityDataSource with TypeFilter
and Include EntityCollection Navigation Property,
and DataPager caused a NullReferenceException error in the
System.Web.UI.WebControls.EntityDataSourceView.ExecuteSelect function. (Bug
#12776517, Bug #61714)

• Executing a “LINQ to Entity” query could result in a NullReferenceException error. (Bug
#12776598, Bug #61729)

• On Model First changed column types generated in SQL scripts to produce more suitable MySql
types. (Bug #59244, Bug #12707104)

http://dev.mysql.com/doc/refman/5.5/en/windows-authentication-plugin.html

Changes in MySQL Connector/Net 6.4.3 (2011-07-03)

251

• MySqlScript was modified to enable correct processing of the DELIMITER command when not
followed by a new line. (Bug #61680, Bug #12732279)

• MySqlDataReader.Close was modified to use Default behavior when clearing remaining result
sets. (Bug #61690, Bug #12723423)

• The ASP.NET membership provider was modified to create and query all related tables using
lowercase names. (Bug #61108, Bug #12702009)

A.3.4. Changes in MySQL Connector/Net 6.4.3 (2011-07-03)

This release fixes bugs since 6.4.2.

Bugs Fixed

• SchemaDefinition-5.5.ssdl was modified to treat CHAR(36) columns as a GUID. (Bug
#61657, Bug #12708208)

• SqlFragment.QuoteIdentifier was modified to add MySQL quotes around identifiers. (Bug
#61635, Bug #12707285)

A.3.5. Changes in MySQL Connector/Net 6.4.2 (2011-06-29)

This release fixes bugs since 6.4.1.

Bugs Fixed

• Modified ProviderManifest.xml to map TIMESTAMP database columns to the DateTime .NET
type. (Bug #55351, Bug #12652602)

• Modified MySqlConnection.BeginTransaction to throw a NotSupportedException for
Snapshot isolation level. (Bug #61589, Bug #12698020)

• Fixed Entity Framework provider GROUP BY clause generation by adding all group-by keys to the
SELECT statement. (Bug #46742, Bug #12622129)

A.3.6. Changes in MySQL Connector/Net 6.4.1 (2011-06-06, Alpha)

First alpha release.

Functionality Added or Changed

• Calling a stored procedure with output parameters caused a marked performance decrease. (Bug
#60366, Bug #12425959)

• Changed how the procedure schema collection is retrieved. If the connection string contains “use
procedure bodies=true” then a SELECT is performed on the mysql.proc table directly, as this
is up to 50 times faster than the current Information Schema implementation. If the connection string
contains “use procedure bodies=false”, then the Information Schema collection is queried.
(Bug #36694)

A.3.7. Changes in MySQL Connector/Net 6.4.0 (Unknown)

Version 6.4.0 has no changelog entries.

A.4. Changes in MySQL Connector/Net Version 6.3

A.4.1. Changes in MySQL Connector/Net 6.3.9 (2012-04-11)

This release fixes bugs since 6.3.8.

Bugs Fixed

http://dev.mysql.com/doc/refman/5.5/en/select.html

Changes in MySQL Connector/Net 6.3.9 (2012-04-11)

252

• When the length of a VARCHAR column was edited in Table Designer, the data type could be saved
incorrectly as BIT. (Bug #13916560)

• Any sequence of Take(n) method calls followed by Count or LongCount would cause a
System.Data.EntityCommandCompilationException error. (Bug #13913047, Bug #64749)

• When adding a ADO.NET Entity Data Model and generating the model from a database containing
foreign keys, the foreign keys were not included in the generated model. (Bug #13800109)

• The performance when setting the CommandText property on the MySqlCommand class was
improved by enhancing the efficiency of a string comparison operation. (Bug #13739383, Bug
#64012)

• Fixed MySqlTime parsing to avoid throwing an exception when handling milliseconds (as result of a
timediff operation). (Bug #13708884, Bug #64268)

• In Visual Studio Table Designer, when adding a second foreign key, the new name was incorrectly
assigned to the first foreign key in the list. (Bug #13613824)

• In Visual Studio Table Designer, when editing a foreign key relationship, choosing a column name on
the left side made that column name unavailable on the right side. (Bug #13615258)

• In Visual Studio Table Designer, an error could occur if you added and deleted column information
for foreign keys in a particular sequence. (Bug #13610235)

• In Visual Studio Table Designer, deleting a foreign key relationship in the Relationship dialog
required clicking twice. (Bug #13610283)

• In Visual Studio Table Designer, modifying the Columns field in the Indexes/Keys dialog multiple
times could cause an error. (Bug #13613765)

• In Visual Studio Table Designer, it was possible to save a new foreign key relationship without filling
in the fields of the Foreign Key Relationship dialog. (Bug #13613839)

• In Visual Studio Table Designer, changes to a field were sometimes not detected until you switched
focus away from that field. (Bug #13613755)

• In Visual Studio Table Designer, changing the length of a VARCHAR field could cause an error. (Bug
#13611677)

• When creating a Visual Studio Web Application Project, using the ADO.NET Entity Data Model and
generating the model from a database, the Entity Framework Model was not created. This operation
gave an error:

Access denied for user 'root'@'localhost' (using password: NO)

(Bug #13610452)

• If MySqlCommand.CommandText was equal to null, then MySqlCommand.ExecuteReader()
would throw the wrong exception: NullReferenceException instead of
InvalidOperationException. (Bug #13624659, Bug #64092)

• When using connection pooling, the connections in the pool were not automatically
closed upon application exit. With the setting log-warnings=2, you could encounter
Aborted connection errors in the MySQL error log. The workaround was to explicitly call
MySql.Data.MySqlClient.MySqlConnection.ClearAllPools(); upon exiting the
application. (Bug #13629471, Bug #63942)

• The MySQL script generated by using the function CreateDatabaseScript used names with
incorrect singular/plural forms. (Bug #13582837, Bug #62150)

• In Visual Studio Table Designer, the Add -> Function Import... dialog could close prematurely when
you pressed the Get Column Information button. (Bug #13511736)

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key

Changes in MySQL Connector/Net 6.3.8 (2011-12-16)

253

• In “LINQ to Entity” queries, including a child entity (1-n) and its entities (n-n) returned the wrong
results. For example:

db.Authors.Include("Books.Editions").AsEnumerable().First();

(Bug #13491698, Bug #62801)

• After an UPDATE statement, Connector/Net would generate incorrect SELECT SQL statements if a
value in the WHERE clause was not also present in the SET clause of the UPDATE. (Bug #13491689,
Bug #62134)

• In Visual Studio's Server Explorer, right-clicking on a table in the Tables tree and selecting Create
Trigger could cause an error, Object reference not set to an instance of an object.
(Bug #13511801)

• IntelliSense would emit an error when the "-" (minus) character was typed. (Bug #13522344)

• The class MySql.Data.Types.MySqlDateTime was not serializable. (Bug #11750161, Bug
#40555)

• Connector/NET incorrectly maps PrimitiveTypeKind.Byte to tinyint, instead of utinyint.
And PrimitiveTypeKind.SByte mapping was added, to tinyint. (Bug #62135, Bug
#13061713)

• Connector/NET would incorrectly map decimal values to ANSI strings. (Bug #62246, Bug
#13050570)

• On Model First changed column types generated in SQL scripts to produce more suitable MySql
types. (Bug #59244, Bug #12707104)

A.4.2. Changes in MySQL Connector/Net 6.3.8 (2011-12-16)

This release fixes bugs since 6.3.7.

Bugs Fixed

• In Visual Studio Table Designer, if you tried to save a new table using an existing table name,
subsequently you would not be prompted to choose a new name, preventing you from saving the
table. (Bug #13785918)

• Visual Studio 2010 Table Designer could give an error “Object reference not set to an instance of
an object” for schemas with certain combinations of column names and foreign key references. The
SQL syntax was incorrect for the ALTER TABLE statement generated by the Table Designer. (Bug
#13591545, Bug #63714)

• In table designer for Visual Studio, you could not create a foreign key that referenced the same table
as source and destination. When adding a new relationship, the Referenced table list did not offer
the original table as one of the choices. (Bug #13481340)

• Creating a table through the Server Explorer Window on Visual Studio 2010 could fail with a MySQL
syntax error. The properties in the CREATE TABLE statement could be listed in incorrect order. (Bug
#13475830)

• In Table Designer for Visual Studio, trying to delete foreign keys from an InnoDB table showed an
error, and the change was not saved. (Bug #13481362)

• When creating a project in VisualStudio using a .NET framework such as 3.0 or 3.5 (anything less
than 4.0), the Connector/Net library (MySql.Data.dll) was not listed in the Add References
dialog box. The workaround was to browse to the library and add it manually. (Bug #13491678, Bug
#60462)

• When a new column was added in Table Designer without selecting an associated data type, an
error would occur trying to save the column definition. (Bug #13481298)

http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key

Changes in MySQL Connector/Net 6.3.8 (2011-12-16)

254

• When creating a foreign key relationship in Table Designer, changes to the ON UPDATE and ON
CASCADE settings were not reflected in the actual table definition, as displayed by SHOW CREATE
TABLE. (Bug #13481348)

• Removing a method was not affecting the indexes list of the table object, as defined within the Table
Designer. (Bug #13481313)

• The columns added in descending sort order were not included in the index, as defined within the
Server Explorer. (Bug #13481709)

• The comment property and index type were not added in the definition of the index, as defined within
the Server Explorer. (Bug #13481314)

• The Connector/Net installed for all users, and thus was not available in the Add/Remove Programs
dialog for users other than the one who installed it. (Bug #13447941)

• The default value for VARCHAR and CHAR field types would contain single quotation marks. (Bug
#13442506)

• When creating a tableadapter through a Dataset form in Visual Studio, the MaxLength of the field
for a CHAR column could be set to 3 times the length of the table column. Although this many bytes
could be needed to hold a UTF-8 character value, the length value was not appropriate for restricting
the length of a TextBox. (Bug #12860224, Bug #62094)

• When adding a MEDIUMTEXT or LONGTEXT column Visual Studio, the facet Fixed length had to
be set to false, even though these types allow arbitrary lengths. (Bug #12848277, Bug #54915)

• Using a combination of ListView, EntityDataSource with TypeFilter
and Include EntityCollection Navigation Property,
and DataPager caused a NullReferenceException error in the
System.Web.UI.WebControls.EntityDataSourceView.ExecuteSelect function. (Bug
#12776517, Bug #61714)

• Executing a “LINQ to Entity” query could result in a NullReferenceException error. (Bug
#12776598, Bug #61729)

• Connector/NET experienced poor performance when adding parameters to the MySQLCommand.
(Bug #62653, Bug #13331475)

• The Unicode quotation mark character U+0022 was not escaped by the MySQLHelper class. (Bug
#62585, Bug #13092886)

• Using a return parameter without a name resulted in an IndexOutOfRangeException exception.
(Bug #62416, Bug #13006969)

• The Mono runtime did not support hashed passwords. (Bug #62203, Bug #13041618)

• Modified ProviderManifest.xml to map TIMESTAMP database columns to the DateTime .NET
type. (Bug #55351, Bug #12652602)

• Modified MySqlConnection.BeginTransaction to throw a NotSupportedException for
Snapshot isolation level. (Bug #61589, Bug #12698020)

• SchemaDefinition-5.5.ssdl was modified to treat CHAR(36) columns as a GUID. (Bug
#61657, Bug #12708208)

• SqlFragment.QuoteIdentifier was modified to add MySQL quotes around identifiers. (Bug
#61635, Bug #12707285)

• MySqlScript was modified to enable correct processing of the DELIMITER command when not
followed by a new line. (Bug #61680, Bug #12732279)

• MySqlDataReader.Close was modified to use Default behavior when clearing remaining result
sets. (Bug #61690, Bug #12723423)

Changes in MySQL Connector/Net 6.3.7 (2011-06-22)

255

• The ASP.NET membership provider was modified to create and query all related tables using
lowercase names. (Bug #61108, Bug #12702009)

A.4.3. Changes in MySQL Connector/Net 6.3.7 (2011-06-22)

This release fixes bugs since 6.3.6.

Functionality Added or Changed

• Calling a stored procedure with output parameters caused a marked performance decrease. (Bug
#60366, Bug #12425959)

Bugs Fixed

• MySQLConnectionStringBuilder.ContainsKey() incorrectly returned false when testing
whether a keyword was part of the connection string. (Bug #11766671, Bug #59835)

• Fixed Entity Framework provider GROUP BY clause generation by adding all group-by keys to the
SELECT statement. (Bug #46742, Bug #12622129)

• A NullReferenceException was thrown on disposal of a TransactionScope object. (Bug
#59346, Bug #11766272)

• MySQL Connector/Net generated an exception when executing a query consisting of ';', for example:

mycmd(";",mycon)
mycmd.executenonquery()

The exception generated was:

System.IndexOutOfRangeException: Index was outside the bounds of the array.
 at MySql.Data.MySqlClient.MySqlCommand.TrimSemicolons(String sql)
 at MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior)
 at MySql.Data.MySqlClient.MySqlCommand.ExecuteReader()
 at MySql.Data.MySqlClient.MySqlCommand.ExecuteNonQuery()

(Bug #59537, Bug #11766433)

• MySQL Connector/Net 6.3.6 did not work with Visual Studio 2010. (Bug #60723, Bug #12394470)

• MysqlDataReader.GetSchemaTable returned incorrect values and types. (Bug #59989, Bug
#11776346)

• Setting Membership.ApplicationName had no effect. (Bug #59438, Bug #11770465)

• All queries other than INSERT were executed individually instead of as a batch even though batching
was enabled for the connection. (Bug #59616, Bug #11850286)

• The setup wizard failed with the error “Setup Wizard ended prematurely because of an error”. This
was because it assumed .NET Framework version 4.0 was located on the C: drive, when it was
actually located on the E: drive. (Bug #59301)

A.4.4. Changes in MySQL Connector/Net 6.3.6 (2011-01-03)

This release fixes bugs since 6.3.5.

Functionality Added or Changed

• Changed how the procedure schema collection is retrieved. If the connection string contains “use
procedure bodies=true” then a SELECT is performed on the mysql.proc table directly, as this
is up to 50 times faster than the current Information Schema implementation. If the connection string
contains “use procedure bodies=false”, then the Information Schema collection is queried.
(Bug #36694)

http://dev.mysql.com/doc/refman/5.5/en/select.html

Changes in MySQL Connector/Net 6.3.6 (2011-01-03)

256

Bugs Fixed

• In the ADO.NET Entity Data Model Wizard, the time to update a model scaled abnormally as the
number of entities increased. (Bug #48791, Bug #12596237)

• The MySqlTokenizer contained unnecessary Substring and Trim calls:

string token = sql.Substring(startIndex, stopIndex - startIndex).Trim();

The variable token was not used anywhere in the code. (Bug #58757)

• MembershipProvider did not generate hashes correctly if the algorithm was keyed. The Key
of the algorithm should have been set if the HashAlgorithm was KeyedHashAlgorithm. (Bug
#58906)

• When attempting to create an ADO.NET Entity Data Model, MySQL connections were not available.
(Bug #58278)

• MySqlCommand.ExecuteReader(CommandBehavior) threw a NullReferenceException
when being called with CommandBehavior.CloseConnection, if the SQL statement contained a
syntax error, or contained invalid data such as an invalid column name. (Bug #58652)

• The ADO.NET Entity Data Model could not add stored procedures from MySQL Server 5.0.45 but
worked fine using MySQL Server 5.1. (Bug #55349)

• Code introduced to fix bug #54863 proved problematic on .NET version 3.5 and above. (Bug
#58853)

• ReadFieldLength() returned incorrect value for BIGINT autoincrement columns. (Bug #58373)

• Calling the Read() method on a DataReader obtained from MySqlHelper.ExecuteReader
generated the following exception:

Unhandled Exception: MySql.Data.MySqlClient.MySqlException: Invalid attempt to R
ead when reader is closed.
 at MySql.Data.MySqlClient.MySqlDataReader.Read()
 at MySqlTest.MainClass.Main(String[] args)

(Bug #57501)

• MySQL Connector/Net did not support the utf8mb4 character set. When attempting to connect to
utf8mb4 tables or columns, an exception KeyNotFoundException was generated. (Bug #58244)

• Default values returned for text columns were not quoted. This meant that the COLUMN_DEFAULT
field of the GetSchema columns collection did not return a valid SQL expression. (Bug #56509)

• When using MySQL Connector/Net on Mono 2.8 using .NET 4.0, attempting to connect to a MySQL
database generated the following exception:

Unhandled Exception: System.MissingMethodException: Method not found:
 'System.Data.Common.DbConnection.EnlistTransaction'.
 at (wrapper remoting-invoke-with-check)
 MySql.Data.MySqlClient.MySqlConnection:Open ()

(Bug #56509)

• When the tracing driver was used and an SQL statement was longer than 300 characters, an
ArgumentOutOfRangeExcpetion occurred if the statement also contained a quoted character, and
the 300th character was in the middle of a quoted token. (Bug #57641)

• MySQL Connector/Net for .NET/Mono attempted to dynamically load the assembly
Mono.Posix.dll when a Unix socket was used to connect to the server. This failed and the
connector was not able to use a Unix socket unless the Mono.Posix.dll assembly was previously
loaded by the program. (Bug #56410)

Changes in MySQL Connector/Net 6.3.5 (2010-10-12)

257

• Installation of MySQL Connector/Net 6.3.5 failed. The error reported was:

MySQL Connector Net 6.3.5 Setup Wizard ended
prematurely because of an error. Your system has not been modified.

(Bug #57654)

A.4.5. Changes in MySQL Connector/Net 6.3.5 (2010-10-12)

This release fixes bugs since 6.3.4.

Bugs Fixed

• A typed dataset did not get the table name. (Bug #57894, Bug #11764989)

• Setting MySqlCommand.CommandTimeout to 0 had no effect. It should have resulted in an infinite
timeout. (Bug #57265)

• When an output parameter was declared as type MySqlDbType.Bit, it failed to return with the
correct value. (Bug #56756)

• When performing a row-by-row update, only the first row was updated and all other rows were
ignored. (Bug #57092)

• Setting the Default Command Timeout connection string option had no effect. (Bug #56806)

• MySQL Connector/Net experienced two problems as follows:

1. A call to System.Data.Objects.ObjectContext.DatabaseExists() returned false, even
if the database existed.

2. A call to System.Data.Objects.ObjectContext.CreateDatabase() created a database
but with a name other than the one specified in the connection string. It then failed to use it when
EDM objects were processed.

(Bug #56859)

• MySqlHelper.ExecuteReader did not include an overload accepting MySqlParameter
objects when using a MySqlConnection. However, MySqlHelper did include an overload
for MySqlParameter objects when using a string object containing the connection string to the
database. (Bug #56755)

• MySQL Connector/Net 6.1.3 (GA) would not install on a Windows Server 2008 (Web Edition) clean
installation. There were two problems:

• If .NET framework version 4.0 was not installed, installation failed because c:\windows
\microsoft.net\v4.0.* did not exist.

• If .NET 4.0 was subsequently installed, then the following error was generated:

InstallFiles: File: MySql.Data.Entity.dll, Directory: , Size: 229888
MSI (s) (E0:AC) [15:20:26:196]: Assembly Error:The assembly is built by a runtime newer
than the currently loaded runtime, and cannot be loaded.
MSI (s) (E0:AC) [15:20:26:196]: Note: 1: 1935 2: 3: 0x8013101B 4: IStream 5: Commit 6:
MSI (s) (E0:A0) [15:20:26:196]: Note: 1: 1304 2: MySql.Data.Entity.dll
Error 1304. Error writing to file: MySql.Data.Entity.dll. Verify that you have access to
that directory.

(Bug #56580)

A.4.6. Changes in MySQL Connector/Net 6.3.4 (2010-09-01, Generally
Available)

First GA release. This release fixes bugs since 6.3.3.

Changes in MySQL Connector/Net 6.3.3 (2010-07-27)

258

Bugs Fixed

• Opening a connection in the Visual Studio Server Explorer and choosing to alter an existing routine
required another authentication at the server. (Bug #44715)

• Stored procedure enumeration code generated an error if a procedure was used in a dataset that did
not return any resultsets. (Bug #50671)

• EventLog was not disposed in the SessionState provider. (Bug #52550)

• When attempting to carry out an operation such as:

from p in db.Products where p.PostedDate>=DateTime.Now select p;

Where p.PostedDate is a DateTimeOffset, and the underlying column type is a TIMESTAMP,
the following exception was generated:

MySqlException occurred
Unable to serialize date/time value

MySQL Connector/Net has now been changed so that all TIMESTAMP columns will be surfaced as
DateTime. (Bug #52550)

• Attempting to read Double.MinValue from a DOUBLE column in MySQL table generated the
following exception:

System.OverflowException : Value was either too large or too small for a Double.

--OverflowException
at System.Number.ParseDouble(String value, NumberStyles options, NumberFormatInfo
numfmt)
at MySql.Data.Types.MySqlDouble.MySql.Data.Types.IMySqlValue.ReadValue(MySqlPacket
packet, Int64 length, Boolean nullVal)
at MySql.Data.MySqlClient.NativeDriver.ReadColumnValue(Int32 index, MySqlField field,
IMySqlValue valObject)
at MySql.Data.MySqlClient.ResultSet.ReadColumnData(Boolean outputParms)
at MySql.Data.MySqlClient.ResultSet.NextRow(CommandBehavior behavior)
at MySql.Data.MySqlClient.MySqlDataReader.Read()

(Bug #55644)

• The calculation of lockAge in the Session Provider sometimes generated a
System.Data.SqlTypes.SqlNullValueException. (Bug #55701)

• The INSERT command was significantly slower with MySQL Connector/Net 6.x compared to 5.x,
when compression was enabled. (Bug #48243)

• If using MySQL Server 5.0.x it was not possible to alter stored routines in Visual Studio. If the stored
routine was clicked, and the context sensitive menu option, Alter Routine, selected, the following
error was generated:

Unable to load object with error: Object reference not
set to an instance of an object

(Bug #55170)

• Calling MySqlDataAdapter.Update(DataTable) resulted in an unacceptable performance hit
when updating large amounts of data. (Bug #55609)

A.4.7. Changes in MySQL Connector/Net 6.3.3 (2010-07-27)

This release fixes bugs since 6.3.2.

Bugs Fixed

• Membership schema creation failed if the default schema collation was not Latin1. (Bug #53174)

Changes in MySQL Connector/Net 6.3.3 (2010-07-27)

259

• CHAR(36) columns were not recognized as GUIDs when used in views with entity models. (Bug
#52085)

• MySQL Connector/Net 6.3.2 failed to install on Windows Vista. (Bug #53975)

• When batching was used in MySqlDataAdapter, a connection was not opened automatically in
MySqlDataAdapter.Update(). This resulted in an InvalidOperationException exception
being generated, with the message text “connection must be valid and open”.

MySQL Connector/Net has been changed to behave more like SQL Server: if the connection is
closed, it is opened for the duration of update operation. (Bug #38411)

• MySQL Connector/Net did not process Thread.Abort() correctly, and failed to cancel queries
currently running on the server. (Bug #54012)

• MySQL Connector/Net did not throw an EndOfStreamException exception when
net_write_timeout was exceeded. (Bug #53439)

• The icon for the MySQL Web Configuration Tool was not displayed in Visual Studio for Web
Application Projects. (Bug #54571)

• Database name was emitted into typed datasets. This prevented users using the configured default
database. (Bug #33870)

• MySqlDataAdapter.Update() generated concurrency violations for custom stored procedure
driven update commands that used UpdateRowSource.FirstReturnedRecord. (Bug #54895)

• Several calls to DataAdapter.Update() with intervening changes to DataTable resulted in
ConcurrencyException exceptions being generated. (Bug #54863)

• MySQL Connector/Net generated a null reference exception when TransactionScope was used
by multiple threads. (Bug #54681)

• The MySQL Connector/Net installation failed due to machine.config files not being present in
configuration folders.

MySQL Connector/Net has been changed to skip over configuration folders that do not contain a
machine.config file. (Bug #52352)

• If MySqlDataAdapter was used with an INSERT command where the VALUES clause contained
an expression with parentheses in it, and set the adapter.UpdateBatchSize parameter to be
greater than one, then the call to adapter.Update either generated an exception or failed to batch
the commands, executing each insert individually. (Bug #54386)

• The MySqlHelper object did not have an overloaded version of the ExecuteReader method that
accepted a MySqlConnection object. (Bug #54570)

• Garbage Collector disposal of a MySqlConnection object caused the following exception:

System.IO.EndOfStreamException: Attempted to read past the end of the stream.
MySql.Data.MySqlClient.MySqlStream.ReadFully(Stream stream, Byte[] buffer, Int32 offset,
Int32 count)
MySql.Data.MySqlClient.MySqlStream.LoadPacket()
Outer Exception Reading from the stream has failed.
...

(Bug #53457)

• After a timeout exception, if an attempt was made to reuse a connection returned to the connection
pool the following exception was generated:

[MySqlException (0x80004005): There is already an open DataReader associated with this
Connection which must be closed first.]
 MySql.Data.MySqlClient.MySqlCommand.CheckState() +278
 MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior) +43

Changes in MySQL Connector/Net 6.3.2 (2010-05-24, Beta)

260

 MySql.Data.MySqlClient.MySqlCommand.ExecuteReader() +6
 Controls.SimpleCommand.ExecuteReader(String SQL) in ...:323
 Albums.GetImagesByAlbum(SimpleCommand Cmd, Int32 iAlbum, String Order, String Limit)
in ...:13
 Forecast.Page_Load(Object sender, EventArgs e) in ...:70
 System.Web.UI.Control.OnLoad(EventArgs e) +99
 System.Web.UI.Control.LoadRecursive() +50
 System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean
includeStagesAfterAsyncPoint) +627

(Bug #53357)

• The method MySql.Data.Common.QueryNormalizer.CollapseValueList generated an
ArgumentOutOfRangeException. (Bug #54152, Bug #53865)

• When an application was subjected to increased concurrent load, MySQL Connector/Net generated
the following error when calling stored procedures:

A DataTable named \'Procedure Parameters\'
already belongs to this DataSet.

(Bug #49118)

• When the connection string option “Connection Reset = True” was used, a connection reset used
the previously used encoding for the subsequent authentication operation. This failed, for example, if
UCS2 was used to read the last column before the reset. (Bug #47153)

A.4.8. Changes in MySQL Connector/Net 6.3.2 (2010-05-24, Beta)

First Beta release. This release fixes bugs since 6.3.1.

Functionality Added or Changed

• Procedure caching had a problem whereby if you created a procedure, dropped it, and recreated it
with a different number of parameters an exception was generated.

MySQL Connector/Net has been changed so that if the procedure is recreated with a different
number of parameters, it will still be recognized. (Bug #52562)

• MySQL Connector/Net has been changed to include MySqlDataReader.GetFieldType(string
columnname). Further, MySqlDataReader.GetOrdinal() now includes the name of the column
in the exception if the column is not found. (Bug #47467)

Bugs Fixed

• After an exception, the internal datareader, MySqlCommand.Connection.Reader, was not
properly closed (it was not set to null). If another query was subsequently executed on that command
object an exception was generated with the message “There is already an open DataReader
associated with this Connection which must be closed first.” (Bug #55558)

• MySQL Connector/Net generated an exception when used to read a TEXT column containing more
than 32767 bytes. (Bug #54040)

• In MySQL Connector/Net, the MySqlConnection.Abort() method contained a try...catch
construct, with an empty catch block. This meant that any exception generated at this point would
not be caught. (Bug #52769)

• The procedure cache affected the MySQL Connector/Net performance, reducing it by around 65%.
This was due to unnecessary calls of String.Format(), related to debug logging. Even though
the logging was disabled the string was still being formatted, resulting in impaired performance. (Bug
#52475)

• If FunctionsReturnString=true was used in the connection string, the decimal separator
(according to locale) was not interpreted. (Bug #52187)

Changes in MySQL Connector/Net 6.3.1 (2010-03-02)

261

• In MySQL Connector/Net, the LoadCharsetMap() function of the CharSetMap class set the
following incorrect mapping:

mapping.Add("latin1", new CharacterSet("latin1", 1));

This meant that, for example, the Euro sign was not handled correctly.

The correct mapping should have been:

mapping.Add("latin1", new CharacterSet("windows-1252", 1));

This is because MySQL's latin1 character set is the same as the windows-cp1252 character set
and it extends the official ISO 8859-1 or IANA latin1. (Bug #51927)

• A non-terminated string in SQL threw a CLR exception rather than a syntax exception. (Bug #51788)

• When using table per type inheritance and listing the contents of the parent table, the result of the
query was a list of child objects, even though there was no related child record with the same parent
Id. (Bug #49850)

• MySQL Connector/Net 6.3.1 failed to install. (Bug #51407, Bug #51604)

• When calling ExecuteNonQuery on a command object, the following exception occurred:

Index and length must refer to a location within the string.
Parameter name: length

(Bug #51610)

A.4.9. Changes in MySQL Connector/Net 6.3.1 (2010-03-02)

This release fixes bugs since 6.3.0.

Functionality Added or Changed

• Connector/Net was not compatible with Visual Studio wizards that used square brackets to delimit
symbols.

Connector/Net has been changed to include a new connection string option Sql Server mode that
supports use of square brackets to delimit symbols. (Bug #35852)

Bugs Fixed

• Binary Columns were not displayed in the Query Builder of Visual Studio. (Bug #50171)

• MySqlCommand.Parameters.Clear() did not work. (Bug #50444)

• When the UpdateBatchSize property was set to a value greater than 1, only the first row was
applied to the database. (Bug #50123)

• The method Command.TrimSemicolons used StringBuilder, and therefore allocated memory
for the query even if it did not need to be trimmed. This led to excessive memory consumption when
executing a number of large queries. (Bug #51149)

• Specifying a connection string where an option had no value generated an error, rather than the
value being set to the default. For example, a connection string such as the following would result in
an error:

server=localhost;user=root;compress=;database=test;port=3306;password=123456;

(Bug #51209)

• A connection string set in web.config could not be reused after Visual Studio 2008 Professional
was shut down. It continued working for the existing controls, but did not work for new controls
added. (Bug #41629)

Changes in MySQL Connector/Net 6.3.0 (2010-02-16, Alpha)

262

• When trying to create stored procedures from an SQL script, a MySqlException was thrown when
attempting to redefine the DELIMITER:

MySql.Data.MySqlClient.MySqlException was unhandled
Message="You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near 'DELIMITER' at line 1"
Source="MySql.Data"
ErrorCode=-2147467259
Number=1064
StackTrace:
à MySql.Data.MySqlClient.MySqlStream.ReadPacket()
à MySql.Data.MySqlClient.NativeDriver.ReadResult(UInt64& affectedRows, Int64&
lastInsertId)
à MySql.Data.MySqlClient.MySqlDataReader.GetResultSet()
à MySql.Data.MySqlClient.MySqlDataReader.NextResult()
à MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior)
à MySql.Data.MySqlClient.MySqlCommand.ExecuteReader()
à MySql.Data.MySqlClient.MySqlCommand.ExecuteNonQuery()
à MySql.Data.MySqlClient.MySqlScript.Execute()

Note: The MySqlScript class has been fixed to support the delimiter statement as it is found in
SQL scripts. (Bug #46429)

A.4.10. Changes in MySQL Connector/Net 6.3.0 (2010-02-16, Alpha)

First alpha release of 6.3.

Functionality Added or Changed

• Nested transaction scopes were not supported. MySQL Connector/Net now implements nested
transaction scopes. A per-thread stack of scopes is maintained, which is necessary to handle nested
scopes with the RequiresNew or Suppress options. (Bug #45098)

• Support for MySQL Server 4.1 has been removed from MySQL Connector/Net starting with version
6.3.0. The connector will now throw an exception if you try to connect to a server of version less than
5.0.

Bugs Fixed

• The method MySqlDataReader.GetSchemaTable() returned 0 in the NumericPrecision field
for decimal and newdecimal columns. (Bug #48171)

• Attempting to execute a load data local infile on a file where the user did not have write permissions,
or the file was open in an editor gave an access denied error. (Bug #48944)

• When adding a data set in Visual Studio 2008, the following error was generated:

Relations couldn't be added. Column 'REFERENCED_TABLE_CATALOG' does not belong to table.

This was due to a 'REFERENCED_TABLE_CATALOG' column not being included in the foreign
keys collection. (Bug #48974)

A.5. Changes in MySQL Connector/Net Version 6.2

A.5.1. Changes in MySQL Connector/Net 6.2.6 (Not yet released)

This release fixes bugs since 6.2.5.

Version 6.2.6 has no changelog entries.

A.5.2. Changes in MySQL Connector/Net 6.2.5 (2011-07-01)

This release fixes bugs since 6.2.4.

Bugs Fixed

Changes in MySQL Connector/Net 6.2.5 (2011-07-01)

263

• MySQLConnectionStringBuilder.ContainsKey() incorrectly returned false when testing
whether a keyword was part of the connection string. (Bug #11766671, Bug #59835)

• Modified ProviderManifest.xml to map TIMESTAMP database columns to the DateTime .NET
type. (Bug #55351, Bug #12652602)

• Modified MySqlConnection.BeginTransaction to throw a NotSupportedException for
Snapshot isolation level. (Bug #61589, Bug #12698020)

• Fixed Entity Framework provider GROUP BY clause generation by adding all group-by keys to the
SELECT statement. (Bug #46742, Bug #12622129)

• SchemaDefinition-5.5.ssdl was modified to treat CHAR(36) columns as a GUID. (Bug
#61657, Bug #12708208)

• SqlFragment.QuoteIdentifier was modified to add MySQL quotes around identifiers. (Bug
#61635, Bug #12707285)

• A NullReferenceException was thrown on disposal of a TransactionScope object. (Bug
#59346, Bug #11766272)

• MySQL Connector/Net generated an exception when executing a query consisting of ';', for example:

mycmd(";",mycon)
mycmd.executenonquery()

The exception generated was:

System.IndexOutOfRangeException: Index was outside the bounds of the array.
 at MySql.Data.MySqlClient.MySqlCommand.TrimSemicolons(String sql)
 at MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior)
 at MySql.Data.MySqlClient.MySqlCommand.ExecuteReader()
 at MySql.Data.MySqlClient.MySqlCommand.ExecuteNonQuery()

(Bug #59537, Bug #11766433)

• A typed dataset did not get the table name. (Bug #57894, Bug #11764989)

• MysqlDataReader.GetSchemaTable returned incorrect values and types. (Bug #59989, Bug
#11776346)

• Setting Membership.ApplicationName had no effect. (Bug #59438, Bug #11770465)

• All queries other than INSERT were executed individually instead of as a batch even though batching
was enabled for the connection. (Bug #59616, Bug #11850286)

• The MySqlTokenizer contained unnecessary Substring and Trim calls:

string token = sql.Substring(startIndex, stopIndex - startIndex).Trim();

The variable token was not used anywhere in the code. (Bug #58757)

• MembershipProvider did not generate hashes correctly if the algorithm was keyed. The Key
of the algorithm should have been set if the HashAlgorithm was KeyedHashAlgorithm. (Bug
#58906)

• MySqlCommand.ExecuteReader(CommandBehavior) threw a NullReferenceException
when being called with CommandBehavior.CloseConnection, if the SQL statement contained a
syntax error, or contained invalid data such as an invalid column name. (Bug #58652)

• The ADO.NET Entity Data Model could not add stored procedures from MySQL Server 5.0.45 but
worked fine using MySQL Server 5.1. (Bug #55349)

• Code introduced to fix bug #54863 proved problematic on .NET version 3.5 and above. (Bug
#58853)

Changes in MySQL Connector/Net 6.2.4 (2010-08-30)

264

• ReadFieldLength() returned incorrect value for BIGINT autoincrement columns. (Bug #58373)

• MySQL Connector/Net did not support the utf8mb4 character set. When attempting to connect to
utf8mb4 tables or columns, an exception KeyNotFoundException was generated. (Bug #58244)

• Default values returned for text columns were not quoted. This meant that the COLUMN_DEFAULT
field of the GetSchema columns collection did not return a valid SQL expression. (Bug #56509)

• MySQL Connector/Net for .NET/Mono attempted to dynamically load the assembly
Mono.Posix.dll when a Unix socket was used to connect to the server. This failed and the
connector was not able to use a Unix socket unless the Mono.Posix.dll assembly was previously
loaded by the program. (Bug #56410)

• Setting MySqlCommand.CommandTimeout to 0 had no effect. It should have resulted in an infinite
timeout. (Bug #57265)

• When an output parameter was declared as type MySqlDbType.Bit, it failed to return with the
correct value. (Bug #56756)

• When performing a row-by-row update, only the first row was updated and all other rows were
ignored. (Bug #57092)

• Setting the Default Command Timeout connection string option had no effect. (Bug #56806)

• MySqlHelper.ExecuteReader did not include an overload accepting MySqlParameter
objects when using a MySqlConnection. However, MySqlHelper did include an overload
for MySqlParameter objects when using a string object containing the connection string to the
database. (Bug #56755)

A.5.3. Changes in MySQL Connector/Net 6.2.4 (2010-08-30)

This release fixes bugs since 6.2.3.

Functionality Added or Changed

• Procedure caching had a problem whereby if you created a procedure, dropped it, and recreated it
with a different number of parameters an exception was generated.

MySQL Connector/Net has been changed so that if the procedure is recreated with a different
number of parameters, it will still be recognized. (Bug #52562)

Bugs Fixed

• In the ADO.NET Entity Data Model Wizard, the time to update a model scaled abnormally as the
number of entities increased. (Bug #48791, Bug #12596237)

• Opening a connection in the Visual Studio Server Explorer and choosing to alter an existing routine
required another authentication at the server. (Bug #44715)

• Stored procedure enumeration code generated an error if a procedure was used in a dataset that did
not return any resultsets. (Bug #50671)

• EventLog was not disposed in the SessionState provider. (Bug #52550)

• Attempting to read Double.MinValue from a DOUBLE column in MySQL table generated the
following exception:

System.OverflowException : Value was either too large or too small for a Double.

--OverflowException
at System.Number.ParseDouble(String value, NumberStyles options, NumberFormatInfo
numfmt)
at MySql.Data.Types.MySqlDouble.MySql.Data.Types.IMySqlValue.ReadValue(MySqlPacket

Changes in MySQL Connector/Net 6.2.4 (2010-08-30)

265

packet, Int64 length, Boolean nullVal)
at MySql.Data.MySqlClient.NativeDriver.ReadColumnValue(Int32 index, MySqlField field,
IMySqlValue valObject)
at MySql.Data.MySqlClient.ResultSet.ReadColumnData(Boolean outputParms)
at MySql.Data.MySqlClient.ResultSet.NextRow(CommandBehavior behavior)
at MySql.Data.MySqlClient.MySqlDataReader.Read()

(Bug #55644)

• The calculation of lockAge in the Session Provider sometimes generated a
System.Data.SqlTypes.SqlNullValueException. (Bug #55701)

• The INSERT command was significantly slower with MySQL Connector/Net 6.x compared to 5.x,
when compression was enabled. (Bug #48243)

• If using MySQL Server 5.0.x it was not possible to alter stored routines in Visual Studio. If the stored
routine was clicked, and the context sensitive menu option, Alter Routine, selected, the following
error was generated:

Unable to load object with error: Object reference not
set to an instance of an object

(Bug #55170)

• After an exception, the internal datareader, MySqlCommand.Connection.Reader, was not
properly closed (it was not set to null). If another query was subsequently executed on that command
object an exception was generated with the message “There is already an open DataReader
associated with this Connection which must be closed first.” (Bug #55558)

• Membership schema creation failed if the default schema collation was not Latin1. (Bug #53174)

• CHAR(36) columns were not recognized as GUIDs when used in views with entity models. (Bug
#52085)

• When batching was used in MySqlDataAdapter, a connection was not opened automatically in
MySqlDataAdapter.Update(). This resulted in an InvalidOperationException exception
being generated, with the message text “connection must be valid and open”.

MySQL Connector/Net has been changed to behave more like SQL Server: if the connection is
closed, it is opened for the duration of update operation. (Bug #38411)

• MySQL Connector/Net did not process Thread.Abort() correctly, and failed to cancel queries
currently running on the server. (Bug #54012)

• MySQL Connector/Net did not throw an EndOfStreamException exception when
net_write_timeout was exceeded. (Bug #53439)

• The icon for the MySQL Web Configuration Tool was not displayed in Visual Studio for Web
Application Projects. (Bug #54571)

• Database name was emitted into typed datasets. This prevented users using the configured default
database. (Bug #33870)

• MySqlDataAdapter.Update() generated concurrency violations for custom stored procedure
driven update commands that used UpdateRowSource.FirstReturnedRecord. (Bug #54895)

• Several calls to DataAdapter.Update() with intervening changes to DataTable resulted in
ConcurrencyException exceptions being generated. (Bug #54863)

• If MySqlDataAdapter was used with an INSERT command where the VALUES clause contained
an expression with parentheses in it, and set the adapter.UpdateBatchSize parameter to be
greater than one, then the call to adapter.Update either generated an exception or failed to batch
the commands, executing each insert individually. (Bug #54386)

Changes in MySQL Connector/Net 6.2.4 (2010-08-30)

266

• The MySqlHelper object did not have an overloaded version of the ExecuteReader method that
accepted a MySqlConnection object. (Bug #54570)

• Garbage Collector disposal of a MySqlConnection object caused the following exception:

System.IO.EndOfStreamException: Attempted to read past the end of the stream.
MySql.Data.MySqlClient.MySqlStream.ReadFully(Stream stream, Byte[] buffer, Int32 offset,
Int32 count)
MySql.Data.MySqlClient.MySqlStream.LoadPacket()
Outer Exception Reading from the stream has failed.
...

(Bug #53457)

• After a timeout exception, if an attempt was made to reuse a connection returned to the connection
pool the following exception was generated:

[MySqlException (0x80004005): There is already an open DataReader associated with this
Connection which must be closed first.]
 MySql.Data.MySqlClient.MySqlCommand.CheckState() +278
 MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior) +43
 MySql.Data.MySqlClient.MySqlCommand.ExecuteReader() +6
 Controls.SimpleCommand.ExecuteReader(String SQL) in ...:323
 Albums.GetImagesByAlbum(SimpleCommand Cmd, Int32 iAlbum, String Order, String Limit)
in ...:13
 Forecast.Page_Load(Object sender, EventArgs e) in ...:70
 System.Web.UI.Control.OnLoad(EventArgs e) +99
 System.Web.UI.Control.LoadRecursive() +50
 System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean
includeStagesAfterAsyncPoint) +627

(Bug #53357)

• The method MySql.Data.Common.QueryNormalizer.CollapseValueList generated an
ArgumentOutOfRangeException. (Bug #54152, Bug #53865)

• When an application was subjected to increased concurrent load, MySQL Connector/Net generated
the following error when calling stored procedures:

A DataTable named \'Procedure Parameters\'
already belongs to this DataSet.

(Bug #49118)

• In MySQL Connector/Net, the MySqlConnection.Abort() method contained a try...catch
construct, with an empty catch block. This meant that any exception generated at this point would
not be caught. (Bug #52769)

• The procedure cache affected the MySQL Connector/Net performance, reducing it by around 65%.
This was due to unnecessary calls of String.Format(), related to debug logging. Even though
the logging was disabled the string was still being formatted, resulting in impaired performance. (Bug
#52475)

• If FunctionsReturnString=true was used in the connection string, the decimal separator
(according to locale) was not interpreted. (Bug #52187)

• In MySQL Connector/Net, the LoadCharsetMap() function of the CharSetMap class set the
following incorrect mapping:

mapping.Add("latin1", new CharacterSet("latin1", 1));

This meant that, for example, the Euro sign was not handled correctly.

The correct mapping should have been:

mapping.Add("latin1", new CharacterSet("windows-1252", 1));

Changes in MySQL Connector/Net 6.2.3 (2010-04-10)

267

This is because MySQL's latin1 character set is the same as the windows-cp1252 character set
and it extends the official ISO 8859-1 or IANA latin1. (Bug #51927)

• Periodically the session provider threw an SqlNullValueException exception. When this
happened, the row within the my_aspnet_Sessions table had locked always set to '1'. The
locked status never changed back to '0' and the user experienced the exception on every page, until
their browser was closed and reopened (recreating a new sessionID), or the locked value was
manually changed to '0'. (Bug #52175)

• When the connection string option “Connection Reset = True” was used, a connection reset used
the previously used encoding for the subsequent authentication operation. This failed, for example, if
UCS2 was used to read the last column before the reset. (Bug #47153)

A.5.4. Changes in MySQL Connector/Net 6.2.3 (2010-04-10)

This release fixes bugs since 6.2.2.

Functionality Added or Changed

• MySQL Connector/Net has been changed to include MySqlDataReader.GetFieldType(string
columnname). Further, MySqlDataReader.GetOrdinal() now includes the name of the column
in the exception if the column is not found. (Bug #47467)

Bugs Fixed

• A non-terminated string in SQL threw a CLR exception rather than a syntax exception. (Bug #51788)

• When using table per type inheritance and listing the contents of the parent table, the result of the
query was a list of child objects, even though there was no related child record with the same parent
Id. (Bug #49850)

• When calling ExecuteNonQuery on a command object, the following exception occurred:

Index and length must refer to a location within the string.
Parameter name: length

(Bug #51610)

• Binary Columns were not displayed in the Query Builder of Visual Studio. (Bug #50171)

• MySqlCommand.Parameters.Clear() did not work. (Bug #50444)

• When the UpdateBatchSize property was set to a value greater than 1, only the first row was
applied to the database. (Bug #50123)

• The method Command.TrimSemicolons used StringBuilder, and therefore allocated memory
for the query even if it did not need to be trimmed. This led to excessive memory consumption when
executing a number of large queries. (Bug #51149)

• Specifying a connection string where an option had no value generated an error, rather than the
value being set to the default. For example, a connection string such as the following would result in
an error:

server=localhost;user=root;compress=;database=test;port=3306;password=123456;

(Bug #51209)

• A connection string set in web.config could not be reused after Visual Studio 2008 Professional
was shut down. It continued working for the existing controls, but did not work for new controls
added. (Bug #41629)

• When the MySqlScript.execute() method was called, the following exception was generated:

Changes in MySQL Connector/Net 6.2.2 (2009-12-22, Generally Available)

268

InvalidOperationException : The CommandText property has not been properly initialized.

(Bug #50344)

• When using the Compact Framework the following exception occurred when attempting to connect to
a MySQL Server:

System.InvalidOperationException was unhandled
 Message="Timeouts are not supported on this stream."

(Bug #50321)

• A FormatException was generated when an empty string was returned from a stored function.
(Bug #49642)

• MySqlDataReader.GetUInt64 returned an incorrect value when reading a BIGINT UNSIGNED
column containing a value greater than 2147483647. (Bug #49794)

• Calling a User Defined Function using Entity SQL in the Entity Framework caused a
NullReferenceException. (Bug #45277)

• When trying to create stored procedures from an SQL script, a MySqlException was thrown when
attempting to redefine the DELIMITER:

MySql.Data.MySqlClient.MySqlException was unhandled
Message="You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near 'DELIMITER' at line 1"
Source="MySql.Data"
ErrorCode=-2147467259
Number=1064
StackTrace:
à MySql.Data.MySqlClient.MySqlStream.ReadPacket()
à MySql.Data.MySqlClient.NativeDriver.ReadResult(UInt64& affectedRows, Int64&
lastInsertId)
à MySql.Data.MySqlClient.MySqlDataReader.GetResultSet()
à MySql.Data.MySqlClient.MySqlDataReader.NextResult()
à MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior)
à MySql.Data.MySqlClient.MySqlCommand.ExecuteReader()
à MySql.Data.MySqlClient.MySqlCommand.ExecuteNonQuery()
à MySql.Data.MySqlClient.MySqlScript.Execute()

Note: The MySqlScript class has been fixed to support the delimiter statement as it is found in
SQL scripts. (Bug #46429)

A.5.5. Changes in MySQL Connector/Net 6.2.2 (2009-12-22, Generally
Available)

First GA release of 6.2. This release fixes bugs since 6.2.1.

Bugs Fixed

• MySQL Connector/Net generated an invalid operation exception during a transaction rollback:

System.InvalidOperationException: Connection must be valid and open to rollback
transaction
 at MySql.Data.MySqlClient.MySqlTransaction.Rollback()
 at MySql.Data.MySqlClient.MySqlConnection.CloseFully()
 at
MySql.Data.MySqlClient.MySqlPromotableTransaction.System.Transactions.IPromotableSinglePhaseNotification.Rollback(SinglePhaseEnlistment
singlePhaseEnlistment)
...

(Bug #35330)

• The method MySqlDataReader.GetSchemaTable() returned 0 in the NumericPrecision field
for decimal and newdecimal columns. (Bug #48171)

Changes in MySQL Connector/Net 6.2.1 (2009-11-16, Beta)

269

• Attempting to execute a load data local infile on a file where the user did not have write permissions,
or the file was open in an editor gave an access denied error. (Bug #48944)

• When adding a data set in Visual Studio 2008, the following error was generated:

Relations couldn't be added. Column 'REFERENCED_TABLE_CATALOG' does not belong to table.

This was due to a 'REFERENCED_TABLE_CATALOG' column not being included in the foreign
keys collection. (Bug #48974)

• Connection objects were not garbage collected when not in use. (Bug #31996)

A.5.6. Changes in MySQL Connector/Net 6.2.1 (2009-11-16, Beta)

This release fixes bugs since 6.2.0.

Functionality Added or Changed

• The MySqlParameter class now has a property named PossibleValues. This property is NULL
unless the parameter is created by MySqlCommandBuilder.DeriveParameters. Further, it will
be NULL unless the parameter is of type enum or set - in this case it will be a list of strings that are
the possible values for the column. This feature is designed as an aid to the developer. (Bug #48586)

• MySQL Connector/Net now supports the processing of certificates when connecting to an SSL-
enabled MySQL Server. For further information see the connection string option SSL Mode in the
section Chapter 7, Connector/Net Connection String Options Reference and the tutorial Section 5.7,
“Tutorial: Using SSL with MySQL Connector/Net”.

• Starting with MySQL Connector/Net 6.2, there is a background job that runs every three minutes
and removes connections from pool that have been idle (unused) for more than three minutes. The
pool cleanup frees resources on both client and server side. This is because on the client side every
connection uses a socket, and on the server side every connection uses a socket and a thread.

Prior to this change, connections were never removed from the pool, and the pool always contained
the peak number of open connections. For example, a web application that peaked at 1000
concurrent database connections would consume 1000 threads and 1000 open sockets at the
server, without ever freeing up those resources from the connection pool.

• Prior to MySQL Connector/Net 6.2, MySqlCommand.CommandTimeout included user processing
time, that is processing time not related to direct use of the connector. Timeout was implemented
through a .NET Timer, that triggered after CommandTimeout seconds.

MySQL Connector/Net 6.2 introduced timeouts that are aligned with how Microsoft handles
SqlCommand.CommandTimeout. This property is the cumulative timeout for all network reads
and writes during command execution or processing of the results. A timeout can still occur in the
MySqlReader.Read method after the first row is returned, and does not include user processing
time, only IO operations.

Further details on this can be found in the relevant Microsoft documentation.

Bugs Fixed

• When building the MySql.Data project with .NET Framework 3.5 installed, the following build output
was displayed:

Project file contains ToolsVersion="4.0", which is not supported by this version of
MSBuild. Treating the project as if it had ToolsVersion="3.5".

The project had been created using the .NET Framework 4.0, which was beta, instead of using the
3.5 framework. (Bug #48271)

• When used, the Encrypt connection string option caused a “Keyword not supported” exception to
be generated.

http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand.commandtimeout.aspx

Changes in MySQL Connector/Net 6.2.0 (2009-10-21, Alpha)

270

This option is in fact obsolete, and the option SSL Mode should be used instead. Although the
Encrypt option has been fixed so that it does not generate an exception, it will be removed
completely in version 6.4. (Bug #48290)

• Cloning of MySqlCommand was not typesafe. To clone a MySqlCommand it was necessary to do:

MySqlCommand clone = (MySqlCommand)((ICloneable)comm).Clone();

MySQL Connector/Net was changed so that it was possible to do:

MySqlCommand clone = comm.Clone();

(Bug #48460)

• An entity model created from a schema containing a table with a column of type UNSIGNED BIGINT
and a view of the table did not behave correctly. When an entity was created and mapped to the
view, the column that was of type UNSIGNED BIGINT was displayed as BIGINT. (Bug #47872)

• It was not possible to retrieve a value from a MySQL server table, if the value was larger than that
supported by the .NET type System.Decimal.

MySQL Connector/Net was changed to expose the MySqlDecimal type, along with the supporting
method GetMySqlDecimal. (Bug #48100)

• MySQL Connector/Net session support did not work with MySQL Server versions prior to 5.0, as the
Session Provider used a call to TIMESTAMPDIFF, which was not available on servers prior to 5.0.
(Bug #47219)

A.5.7. Changes in MySQL Connector/Net 6.2.0 (2009-10-21, Alpha)

The first alpha release of 6.2.

Bugs Fixed

• When using a BINARY(16) column to represent a GUID and having specified “old guids = true”
in the connection string, the values were returned correctly until a null value was encountered in
that field. After the null value was encountered a format exception was thrown with the following
message:

Guid should contain 32 digits with 4 dashes (xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx).

(Bug #47928)

• The Session Provider created invalid “session expires” on a random basis.

This was due to the fact that the Session Provider was incorrectly reading from the root
web.config, rather than from the application specific web.config. (Bug #47815)

• When loading the MySQLClient-mono.sln file included with the Connector/Net source into Mono
Develop, the following error occurred:

/home/tbedford/connector-net-src/6.1/MySQLClient-mono.sln(22):
Unsupported or unrecognized project:
'/home/tbedford/connector-net-src/6.1/Installer/Installer.wixproj'

If the file was modified to remove this problem, then attempting to build the solution generated the
following error:

/home/tbedford/connector-net-src/6.1/MySql.Data/Provider/Source/Connection.cs(280,46):
error CS0115: `MySql.Data.MySqlClient.MySqlConnection.DbProviderFactory' is marked as an
override but no suitable property found to override

(Bug #47048)

Changes in MySQL Connector/Net Version 6.1

271

A.6. Changes in MySQL Connector/Net Version 6.1

A.6.1. Changes in MySQL Connector/Net 6.1.7 (Not released, Generally
Available)

This release fixes bugs since 6.1.6.

Version 6.1.7 has no changelog entries.

A.6.2. Changes in MySQL Connector/Net 6.1.6 (Not released, Generally
Available)

This release fixes bugs since 6.1.5.

Version 6.1.6 has no changelog entries.

A.6.3. Changes in MySQL Connector/Net 6.1.5 (2010-08-30, Generally
Available)

This release fixes bugs since 6.1.4.

Bugs Fixed

• In the ADO.NET Entity Data Model Wizard, the time to update a model scaled abnormally as the
number of entities increased. (Bug #48791, Bug #12596237)

• Opening a connection in the Visual Studio Server Explorer and choosing to alter an existing routine
required another authentication at the server. (Bug #44715)

• Stored procedure enumeration code generated an error if a procedure was used in a dataset that did
not return any resultsets. (Bug #50671)

• EventLog was not disposed in the SessionState provider. (Bug #52550)

• Attempting to read Double.MinValue from a DOUBLE column in MySQL table generated the
following exception:

System.OverflowException : Value was either too large or too small for a Double.

--OverflowException
at System.Number.ParseDouble(String value, NumberStyles options, NumberFormatInfo
numfmt)
at MySql.Data.Types.MySqlDouble.MySql.Data.Types.IMySqlValue.ReadValue(MySqlPacket
packet, Int64 length, Boolean nullVal)
at MySql.Data.MySqlClient.NativeDriver.ReadColumnValue(Int32 index, MySqlField field,
IMySqlValue valObject)
at MySql.Data.MySqlClient.ResultSet.ReadColumnData(Boolean outputParms)
at MySql.Data.MySqlClient.ResultSet.NextRow(CommandBehavior behavior)
at MySql.Data.MySqlClient.MySqlDataReader.Read()

(Bug #55644)

• The calculation of lockAge in the Session Provider sometimes generated a
System.Data.SqlTypes.SqlNullValueException. (Bug #55701)

• The INSERT command was significantly slower with MySQL Connector/Net 6.x compared to 5.x,
when compression was enabled. (Bug #48243)

• If using MySQL Server 5.0.x it was not possible to alter stored routines in Visual Studio. If the stored
routine was clicked, and the context sensitive menu option, Alter Routine, selected, the following
error was generated:

Unable to load object with error: Object reference not

Changes in MySQL Connector/Net 6.1.5 (2010-08-30, Generally Available)

272

set to an instance of an object

(Bug #55170)

• Membership schema creation failed if the default schema collation was not Latin1. (Bug #53174)

• CHAR(36) columns were not recognized as GUIDs when used in views with entity models. (Bug
#52085)

• When batching was used in MySqlDataAdapter, a connection was not opened automatically in
MySqlDataAdapter.Update(). This resulted in an InvalidOperationException exception
being generated, with the message text “connection must be valid and open”.

MySQL Connector/Net has been changed to behave more like SQL Server: if the connection is
closed, it is opened for the duration of update operation. (Bug #38411)

• MySQL Connector/Net did not throw an EndOfStreamException exception when
net_write_timeout was exceeded. (Bug #53439)

• The icon for the MySQL Web Configuration Tool was not displayed in Visual Studio for Web
Application Projects. (Bug #54571)

• Database name was emitted into typed datasets. This prevented users using the configured default
database. (Bug #33870)

• MySqlDataAdapter.Update() generated concurrency violations for custom stored procedure
driven update commands that used UpdateRowSource.FirstReturnedRecord. (Bug #54895)

• Several calls to DataAdapter.Update() with intervening changes to DataTable resulted in
ConcurrencyException exceptions being generated. (Bug #54863)

• If MySqlDataAdapter was used with an INSERT command where the VALUES clause contained
an expression with parentheses in it, and set the adapter.UpdateBatchSize parameter to be
greater than one, then the call to adapter.Update either generated an exception or failed to batch
the commands, executing each insert individually. (Bug #54386)

• The MySqlHelper object did not have an overloaded version of the ExecuteReader method that
accepted a MySqlConnection object. (Bug #54570)

• Garbage Collector disposal of a MySqlConnection object caused the following exception:

System.IO.EndOfStreamException: Attempted to read past the end of the stream.
MySql.Data.MySqlClient.MySqlStream.ReadFully(Stream stream, Byte[] buffer, Int32 offset,
Int32 count)
MySql.Data.MySqlClient.MySqlStream.LoadPacket()
Outer Exception Reading from the stream has failed.
...

(Bug #53457)

• After a timeout exception, if an attempt was made to reuse a connection returned to the connection
pool the following exception was generated:

[MySqlException (0x80004005): There is already an open DataReader associated with this
Connection which must be closed first.]
 MySql.Data.MySqlClient.MySqlCommand.CheckState() +278
 MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior) +43
 MySql.Data.MySqlClient.MySqlCommand.ExecuteReader() +6
 Controls.SimpleCommand.ExecuteReader(String SQL) in ...:323
 Albums.GetImagesByAlbum(SimpleCommand Cmd, Int32 iAlbum, String Order, String Limit)
in ...:13
 Forecast.Page_Load(Object sender, EventArgs e) in ...:70
 System.Web.UI.Control.OnLoad(EventArgs e) +99
 System.Web.UI.Control.LoadRecursive() +50
 System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean
includeStagesAfterAsyncPoint) +627

Changes in MySQL Connector/Net 6.1.4 (2010-04-28, Generally Available)

273

(Bug #53357)

• The method MySql.Data.Common.QueryNormalizer.CollapseValueList generated an
ArgumentOutOfRangeException. (Bug #54152, Bug #53865)

• When an application was subjected to increased concurrent load, MySQL Connector/Net generated
the following error when calling stored procedures:

A DataTable named \'Procedure Parameters\'
already belongs to this DataSet.

(Bug #49118)

• When the connection string option “Connection Reset = True” was used, a connection reset used
the previously used encoding for the subsequent authentication operation. This failed, for example, if
UCS2 was used to read the last column before the reset. (Bug #47153)

A.6.4. Changes in MySQL Connector/Net 6.1.4 (2010-04-28, Generally
Available)

This release fixes bugs since 6.1.3.

Functionality Added or Changed

• Procedure caching had a problem whereby if you created a procedure, dropped it, and recreated it
with a different number of parameters an exception was generated.

MySQL Connector/Net has been changed so that if the procedure is recreated with a different
number of parameters, it will still be recognized. (Bug #52562)

• MySQL Connector/Net has been changed to include MySqlDataReader.GetFieldType(string
columnname). Further, MySqlDataReader.GetOrdinal() now includes the name of the column
in the exception if the column is not found. (Bug #47467)

Bugs Fixed

• In MySQL Connector/Net, the MySqlConnection.Abort() method contained a try...catch
construct, with an empty catch block. This meant that any exception generated at this point would
not be caught. (Bug #52769)

• If FunctionsReturnString=true was used in the connection string, the decimal separator
(according to locale) was not interpreted. (Bug #52187)

• In MySQL Connector/Net, the LoadCharsetMap() function of the CharSetMap class set the
following incorrect mapping:

mapping.Add("latin1", new CharacterSet("latin1", 1));

This meant that, for example, the Euro sign was not handled correctly.

The correct mapping should have been:

mapping.Add("latin1", new CharacterSet("windows-1252", 1));

This is because MySQL's latin1 character set is the same as the windows-cp1252 character set
and it extends the official ISO 8859-1 or IANA latin1. (Bug #51927)

• A non-terminated string in SQL threw a CLR exception rather than a syntax exception. (Bug #51788)

• When using table per type inheritance and listing the contents of the parent table, the result of the
query was a list of child objects, even though there was no related child record with the same parent
Id. (Bug #49850)

Changes in MySQL Connector/Net 6.1.4 (2010-04-28, Generally Available)

274

• When calling ExecuteNonQuery on a command object, the following exception occurred:

Index and length must refer to a location within the string.
Parameter name: length

(Bug #51610)

• Binary Columns were not displayed in the Query Builder of Visual Studio. (Bug #50171)

• MySqlCommand.Parameters.Clear() did not work. (Bug #50444)

• When the UpdateBatchSize property was set to a value greater than 1, only the first row was
applied to the database. (Bug #50123)

• The method Command.TrimSemicolons used StringBuilder, and therefore allocated memory
for the query even if it did not need to be trimmed. This led to excessive memory consumption when
executing a number of large queries. (Bug #51149)

• A connection string set in web.config could not be reused after Visual Studio 2008 Professional
was shut down. It continued working for the existing controls, but did not work for new controls
added. (Bug #41629)

• When the MySqlScript.execute() method was called, the following exception was generated:

InvalidOperationException : The CommandText property has not been properly initialized.

(Bug #50344)

• A FormatException was generated when an empty string was returned from a stored function.
(Bug #49642)

• MySqlDataReader.GetUInt64 returned an incorrect value when reading a BIGINT UNSIGNED
column containing a value greater than 2147483647. (Bug #49794)

• Calling a User Defined Function using Entity SQL in the Entity Framework caused a
NullReferenceException. (Bug #45277)

• The method MySqlDataReader.GetSchemaTable() returned 0 in the NumericPrecision field
for decimal and newdecimal columns. (Bug #48171)

• Attempting to execute a load data local infile on a file where the user did not have write permissions,
or the file was open in an editor gave an access denied error. (Bug #48944)

• When adding a data set in Visual Studio 2008, the following error was generated:

Relations couldn't be added. Column 'REFERENCED_TABLE_CATALOG' does not belong to table.

This was due to a 'REFERENCED_TABLE_CATALOG' column not being included in the foreign
keys collection. (Bug #48974)

• When trying to create stored procedures from an SQL script, a MySqlException was thrown when
attempting to redefine the DELIMITER:

MySql.Data.MySqlClient.MySqlException was unhandled
Message="You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near 'DELIMITER' at line 1"
Source="MySql.Data"
ErrorCode=-2147467259
Number=1064
StackTrace:
à MySql.Data.MySqlClient.MySqlStream.ReadPacket()
à MySql.Data.MySqlClient.NativeDriver.ReadResult(UInt64& affectedRows, Int64&
lastInsertId)
à MySql.Data.MySqlClient.MySqlDataReader.GetResultSet()
à MySql.Data.MySqlClient.MySqlDataReader.NextResult()
à MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior)

Changes in MySQL Connector/Net 6.1.3 (2009-11-16, Generally Available)

275

à MySql.Data.MySqlClient.MySqlCommand.ExecuteReader()
à MySql.Data.MySqlClient.MySqlCommand.ExecuteNonQuery()
à MySql.Data.MySqlClient.MySqlScript.Execute()

Note: The MySqlScript class has been fixed to support the delimiter statement as it is found in
SQL scripts. (Bug #46429)

A.6.5. Changes in MySQL Connector/Net 6.1.3 (2009-11-16, Generally
Available)

This release fixes bugs since 6.1.2.

Bugs Fixed

• When building the MySql.Data project with .NET Framework 3.5 installed, the following build output
was displayed:

Project file contains ToolsVersion="4.0", which is not supported by this version of
MSBuild. Treating the project as if it had ToolsVersion="3.5".

The project had been created using the .NET Framework 4.0, which was beta, instead of using the
3.5 framework. (Bug #48271)

• Cloning of MySqlCommand was not typesafe. To clone a MySqlCommand it was necessary to do:

MySqlCommand clone = (MySqlCommand)((ICloneable)comm).Clone();

MySQL Connector/Net was changed so that it was possible to do:

MySqlCommand clone = comm.Clone();

(Bug #48460)

• An entity model created from a schema containing a table with a column of type UNSIGNED BIGINT
and a view of the table did not behave correctly. When an entity was created and mapped to the
view, the column that was of type UNSIGNED BIGINT was displayed as BIGINT. (Bug #47872)

• For some character sets such as UTF-8, a CHAR column would sometimes be incorrectly interpreted
as a GUID by MySQL Connector/Net.

MySQL Connector/Net was changed so that a column would only be interpreted as a GUID if it had a
character length of 36, as opposed to a byte length of 36. (Bug #47985)

• It was not possible to retrieve a value from a MySQL server table, if the value was larger than that
supported by the .NET type System.Decimal.

MySQL Connector/Net was changed to expose the MySqlDecimal type, along with the supporting
method GetMySqlDecimal. (Bug #48100)

• If MySqlConnection.GetSchema was called for "Indexes" on a table named “b`a`d” as follows:

DataTable schemaPrimaryKeys = connection.GetSchema(
 "Indexes",
 new string[] { null, schemaName, "b`a`d"});

Then the following exception was generated:

You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near 'a`d`' at line 1

(Bug #48101)

• When using a BINARY(16) column to represent a GUID and having specified “old guids = true”
in the connection string, the values were returned correctly until a null value was encountered in

Changes in MySQL Connector/Net 6.1.2 (2009-09-08, Generally Available)

276

that field. After the null value was encountered a format exception was thrown with the following
message:

Guid should contain 32 digits with 4 dashes (xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx).

(Bug #47928)

• The Session Provider created invalid “session expires” on a random basis.

This was due to the fact that the Session Provider was incorrectly reading from the root
web.config, rather than from the application specific web.config. (Bug #47815)

• Attempting to build MySQL Connector/Net 6.1 MySQL.Data from source code on Windows failed
with the following error:

...\clones\6.1\MySql.Data\Provider\Source\NativeDriver.cs(519,29): error CS0122:
'MySql.Data.MySqlClient.MySqlPacket.MySqlPacket()' is inaccessible due to its protection level

(Bug #47354)

• When tables were auto created for the Session State Provider they were set to use the MySQL
Server's default collation, rather than the default collation set for the containing database. (Bug
#47332)

• When loading the MySQLClient-mono.sln file included with the Connector/Net source into Mono
Develop, the following error occurred:

/home/tbedford/connector-net-src/6.1/MySQLClient-mono.sln(22):
Unsupported or unrecognized project:
'/home/tbedford/connector-net-src/6.1/Installer/Installer.wixproj'

If the file was modified to remove this problem, then attempting to build the solution generated the
following error:

/home/tbedford/connector-net-src/6.1/MySql.Data/Provider/Source/Connection.cs(280,46):
error CS0115: `MySql.Data.MySqlClient.MySqlConnection.DbProviderFactory' is marked as an
override but no suitable property found to override

(Bug #47048)

A.6.6. Changes in MySQL Connector/Net 6.1.2 (2009-09-08, Generally
Available)

This is the first GA release of 6.1. This release fixes bugs since 6.1.1.

Bugs Fixed

• The MySQL Connector/Net Session State Provider truncated session data to 64KB, due to its
column types being set to BLOB. (Bug #47339)

• Input parameters were missing from Stored Procedures when using them with ADO.NET Data
Entities. (Bug #44985)

• MySQL Connector/Net generated the following exception when using the Session State provider:

You have an error in your SQL syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use near 'MINUTEWHERE SessionId =
'dtmgga55x35oi255nrfrxe45' AND ApplicationId = 1 AND Loc' at line 1
Description: An unhandled exception occurred during the execution of the current web
request. Please review the stack trace for more information about the error and where it
originated in the code.

Exception Details: MySql.Data.MySqlClient.MySqlException: You have an error in your SQL
syntax; check the manual that corresponds to your MySQL server version for the right
syntax to use near 'MINUTEWHERE SessionId = 'dtmgga55x35oi255nrfrxe45' AND ApplicationId =

Changes in MySQL Connector/Net 6.1.1 (2009-08-20, Beta)

277

1 AND Loc' at line 1

(Bug #46939)

• If an error occurred during connection to a MySQL Server, deserializing the error message
from the packet buffer caused a NullReferenceException to be thrown. When the method
MySqlPacket::ReadString() attempted to retrieve the error message, the following line of code
threw the exception:

string s = encoding.GetString(bits, (int)buffer.Position, end - (int)buffer.Position);

This was due to the fact that the encoding field had not been initialized correctly. (Bug #46844)

• MySQL Connector/Net did not time out correctly. The command timeout was set to 30 secs, but
MySQL Connector/Net hung for several hours. (Bug #43761)

A.6.7. Changes in MySQL Connector/Net 6.1.1 (2009-08-20, Beta)

This is the first Beta release of 6.1.

Bugs Fixed

• In the MySqlDataReader class the GetSByte function returned a byte value instead of an sbyte
value. (Bug #46620)

• Calling a Stored Procedure with an output parameter through MySQL Connector/Net resulted in a
memory leak. Calling the same Stored Procedure without an output parameter did not result in a
memory leak. (Bug #36027)

• An exception was generated when using TIMESTAMP columns with the Entity Framework. (Bug
#46311)

• Errors occurred when using the Entity Framework with cultures that used a comma as the decimal
separator. This was because the formatting for SINGLE, DOUBLE and DECIMAL values was not
handled correctly. (Bug #44455)

• When reading data, such as with a MySqlDataAdapter on a MySqlConnection, MySQL
Connector/Net could potentially enter an infinite loop in CompressedStream.ReadNextpacket()
if compression was enabled. (Bug #43678)

• Insert into two tables failed when using the Entity Framework. The exception generated was:

The value given is not an instance of type 'Edm.Int32'

(Bug #45077)

• Conversion of MySQL TINYINT(1) to boolean failed. (Bug #46205, Bug #46359, Bug #41953)

• Calling the Entity Framework SaveChanges() method of any MySQL ORM Entity with a column
type TIME, generated an error message:

Unknown PrimitiveKind Time

(Bug #45457)

• When attempting to connect to MySQL using the Compact Framework version of MySQL Connector/
Net, an IndexOutOfRangeException exception was generated on trying to open the connection.
(Bug #43736)

• The Entity Framework provider was not calling DBSortExpression correctly when the Skip and
Take methods were used, such as in the following statement:

TestModel.tblquarantine.OrderByDescending(q => q.MsgDate).Skip(100).Take(100).ToList();

Changes in MySQL Connector/Net 6.1.1 (2009-08-20, Beta)

278

This resulted in the data being unsorted. (Bug #45723)

• MySQL Connector/Net sometimes hung, without generating an exception. This happened if a read
from a stream failed returning a 0, causing the code in LoadPacket() to enter an infinite loop. (Bug
#46308)

• In the case of long network inactivity, especially when connection pooling was used, connections
were sometimes dropped, for example, by firewalls.

Note: The bugfix introduced a new keepalive parameter, which prevents disconnects by sending
an empty TCP packet after a specified timeout. (Bug #40684)

• The MySQL Connector/Net Profile Provider, MySql.Web.Profile.MySQLProfileProvider,
generated an error when running on Mono. When an attempt was made to save a string in
Profile.Name the string was not saved to the my_aspnet_Profiles table. If an attempt was
made to force the save with Profile.Save() the following error was generated:

Server Error in '/mono' Application

--

The requested feature is not implemented.
Description: HTTP 500. Error processing request.

Stack Trace:

System.NotImplementedException: The requested feature is not implemented.
at MySql.Data.MySqlClient.MySqlConnection.EnlistTransaction
(System.Transactions.Transaction transaction) [0x00000]
at MySql.Data.MySqlClient.MySqlConnection.Open () [0x00000]
at MySql.Web.Profile.MySQLProfileProvider.SetPropertyValues
(System.Configuration.SettingsContext context,
System.Configuration.SettingsPropertyValueCollection collection) [0x00000]

--
Version information: Mono Version: 2.0.50727.1433; ASP.NET Version: 2.0.50727.1433

(Bug #46375)

• MySQL Connector/Net CHM documentation stated that MySQL Server 3.23 was supported. (Bug
#42110)

• When populating a MySQL database table in Visual Studio using the Table Editor, if a
VARCHAR(10) column was changed to a VARCHAR(20) column an exception was generated:

SystemArgumentException: DataGridViewComboBoxCell value is not valid.
To replace this default dialog please handle the DataError Event.

(Bug #46100)

• The MySQL Connector/Net 6.0.4 installer failed with an error. The error message generated was:

There is a problem with this Windows Installer package. A DLL required for this
install to complete could not be run. Contact your support personnel or package vendor.

When OK was clicked to acknowledge the error the installer exited. (Bug #45474)

• An error occurred when building MySQL Connector/Net from source code checked out from the
public SVN repository. This happened on Linux using Mono and Nant. The Mono JIT compiler
version was 1.2.6.0. The Nant version was 0.85.

When an attempt was made to build (for example) the MySQL Connector/Net 5.2 branch using the
command:

$ nant -buildfile:Client.build

Changes in MySQL Connector/Net 6.1.0 (2009-07-15, Alpha)

279

The following error occurred:

BUILD FAILED

Error loading buildfile.
Encoding name 'Windows-1252' not supported.
Parameter name: name

(Bug #42411)

• When using MySQL Connector/Net 6.0.4 and a MySQL Server 4.1 an exception was generated
when trying to execute:

connection.GetSchema("Columns", ...);

The exception generated was:

'connection.GetSchema("Columns")' threw an exception of type
'System.ArgumentException'System.Data.DataTable {System.ArgumentException}
base{"Input string was not in a correct format.Couldn't store <'Select'> in
NUMERIC_PRECISION Column. Expected type is UInt64."}System.Exception
{System.ArgumentException}

(Bug #46270)

• The MySQL Connector/Net method StoredProcedure.GetParameters(string) ignored the
programmer's setting of the UseProcedureBodies option. This broke any application for which
the application's parameter names did not match the parameter names in the Stored Procedure,
resulting in an ArgumentException with the message “Parameter 'foo' not found in the collection.”
and the following stack trace:

MySql.Data.dll!MySql.Data.MySqlClient.MySqlParameterCollection.GetParameterFlexible(stri
ng parameterName = "pStart", bool throwOnNotFound = true) Line 459C#
MySql.Data.dll!MySql.Data.MySqlClient.StoredProcedure.Resolve() Line 157 + 0x25
bytesC#
MySql.Data.dll!MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(System.Data.CommandBeha
vior behavior = SequentialAccess) Line 405 + 0xb bytesC#
MySql.Data.dll!MySql.Data.MySqlClient.MySqlCommand.ExecuteDbDataReader(System.Data.Comma
ndBehavior behavior = SequentialAccess) Line 884 + 0xb bytesC#
System.Data.dll!System.Data.Common.DbCommand.System.Data.IDbCommand.ExecuteReader(System
.Data.CommandBehavior behavior) + 0xb bytes
System.Data.dll!System.Data.Common.DbDataAdapter.FillInternal(System.Data.DataSet
dataset = {System.Data.DataSet}, System.Data.DataTable[] datatables = null, int
startRecord = 0, int maxRecords = 0, string srcTable = "Table", System.Data.IDbCommand
command = {MySql.Data.MySqlClient.MySqlCommand}, System.Data.CommandBehavior behavior) +
0x83 bytes
System.Data.dll!System.Data.Common.DbDataAdapter.Fill(System.Data.DataSet dataSet, int
startRecord, int maxRecords, string srcTable, System.Data.IDbCommand command,
System.Data.CommandBehavior behavior) + 0x120 bytes
System.Data.dll!System.Data.Common.DbDataAdapter.Fill(System.Data.DataSet dataSet) +
0x5f bytes

(Bug #46213)

A.6.8. Changes in MySQL Connector/Net 6.1.0 (2009-07-15, Alpha)

This is the first Alpha release of 6.1.

Functionality Added or Changed

• Website Configuration Dialog - This is a new wizard that is activated by clicking a button on the
toolbar at the top of the Visual Studio Solution Explorer. It works in conjunction with the ASP.Net
administration pages, making it easier to activate and set advanced options for the different MySQL
web providers included.

• Session State Provider - This enables you to store the state of your website in a MySQL server.

Changes in MySQL Connector/Net Version 6.0

280

• Support for native output parameters - This is supported when connected to a server that supports
native output parameters. This includes servers as of 5.5.3 and 6.0.8.

• Changed GUID type - The backend representation of a guid type has been changed to be
CHAR(36). This is so you can use the server UUID() function to populate a GUID table. UUID
generates a 36 character string. Developers of older applications can add old guids=true to the
connection string and the old BINARY(16) type will be used instead.

A.7. Changes in MySQL Connector/Net Version 6.0

A.7.1. Changes in MySQL Connector/Net 6.0.8 (Not released)

Fixes bugs since 6.0.7.

Version 6.0.8 has no changelog entries.

A.7.2. Changes in MySQL Connector/Net 6.0.7 (2010-08-30)

Fixes bugs since 6.0.6.

Bugs Fixed

• In the ADO.NET Entity Data Model Wizard, the time to update a model scaled abnormally as the
number of entities increased. (Bug #48791, Bug #12596237)

• Opening a connection in the Visual Studio Server Explorer and choosing to alter an existing routine
required another authentication at the server. (Bug #44715)

• Stored procedure enumeration code generated an error if a procedure was used in a dataset that did
not return any resultsets. (Bug #50671)

• EventLog was not disposed in the SessionState provider. (Bug #52550)

• Attempting to read Double.MinValue from a DOUBLE column in MySQL table generated the
following exception:

System.OverflowException : Value was either too large or too small for a Double.

--OverflowException
at System.Number.ParseDouble(String value, NumberStyles options, NumberFormatInfo
numfmt)
at MySql.Data.Types.MySqlDouble.MySql.Data.Types.IMySqlValue.ReadValue(MySqlPacket
packet, Int64 length, Boolean nullVal)
at MySql.Data.MySqlClient.NativeDriver.ReadColumnValue(Int32 index, MySqlField field,
IMySqlValue valObject)
at MySql.Data.MySqlClient.ResultSet.ReadColumnData(Boolean outputParms)
at MySql.Data.MySqlClient.ResultSet.NextRow(CommandBehavior behavior)
at MySql.Data.MySqlClient.MySqlDataReader.Read()

(Bug #55644)

• The INSERT command was significantly slower with MySQL Connector/Net 6.x compared to 5.x,
when compression was enabled. (Bug #48243)

• Membership schema creation failed if the default schema collation was not Latin1. (Bug #53174)

• When batching was used in MySqlDataAdapter, a connection was not opened automatically in
MySqlDataAdapter.Update(). This resulted in an InvalidOperationException exception
being generated, with the message text “connection must be valid and open”.

MySQL Connector/Net has been changed to behave more like SQL Server: if the connection is
closed, it is opened for the duration of update operation. (Bug #38411)

Changes in MySQL Connector/Net 6.0.6 (2010-04-28)

281

• Database name was emitted into typed datasets. This prevented users using the configured default
database. (Bug #33870)

• MySqlDataAdapter.Update() generated concurrency violations for custom stored procedure
driven update commands that used UpdateRowSource.FirstReturnedRecord. (Bug #54895)

• Several calls to DataAdapter.Update() with intervening changes to DataTable resulted in
ConcurrencyException exceptions being generated. (Bug #54863)

• If MySqlDataAdapter was used with an INSERT command where the VALUES clause contained
an expression with parentheses in it, and set the adapter.UpdateBatchSize parameter to be
greater than one, then the call to adapter.Update either generated an exception or failed to batch
the commands, executing each insert individually. (Bug #54386)

• The MySqlHelper object did not have an overloaded version of the ExecuteReader method that
accepted a MySqlConnection object. (Bug #54570)

• Garbage Collector disposal of a MySqlConnection object caused the following exception:

System.IO.EndOfStreamException: Attempted to read past the end of the stream.
MySql.Data.MySqlClient.MySqlStream.ReadFully(Stream stream, Byte[] buffer, Int32 offset,
Int32 count)
MySql.Data.MySqlClient.MySqlStream.LoadPacket()
Outer Exception Reading from the stream has failed.
...

(Bug #53457)

• After a timeout exception, if an attempt was made to reuse a connection returned to the connection
pool the following exception was generated:

[MySqlException (0x80004005): There is already an open DataReader associated with this
Connection which must be closed first.]
 MySql.Data.MySqlClient.MySqlCommand.CheckState() +278
 MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior) +43
 MySql.Data.MySqlClient.MySqlCommand.ExecuteReader() +6
 Controls.SimpleCommand.ExecuteReader(String SQL) in ...:323
 Albums.GetImagesByAlbum(SimpleCommand Cmd, Int32 iAlbum, String Order, String Limit)
in ...:13
 Forecast.Page_Load(Object sender, EventArgs e) in ...:70
 System.Web.UI.Control.OnLoad(EventArgs e) +99
 System.Web.UI.Control.LoadRecursive() +50
 System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean
includeStagesAfterAsyncPoint) +627

(Bug #53357)

• The method MySql.Data.Common.QueryNormalizer.CollapseValueList generated an
ArgumentOutOfRangeException. (Bug #54152, Bug #53865)

• When an application was subjected to increased concurrent load, MySQL Connector/Net generated
the following error when calling stored procedures:

A DataTable named \'Procedure Parameters\'
already belongs to this DataSet.

(Bug #49118)

• When the connection string option “Connection Reset = True” was used, a connection reset used
the previously used encoding for the subsequent authentication operation. This failed, for example, if
UCS2 was used to read the last column before the reset. (Bug #47153)

A.7.3. Changes in MySQL Connector/Net 6.0.6 (2010-04-28)

Fixes bugs since 6.0.5.

Changes in MySQL Connector/Net 6.0.6 (2010-04-28)

282

Functionality Added or Changed

• Procedure caching had a problem whereby if you created a procedure, dropped it, and recreated it
with a different number of parameters an exception was generated.

MySQL Connector/Net has been changed so that if the procedure is recreated with a different
number of parameters, it will still be recognized. (Bug #52562)

• MySQL Connector/Net has been changed to include MySqlDataReader.GetFieldType(string
columnname). Further, MySqlDataReader.GetOrdinal() now includes the name of the column
in the exception if the column is not found. (Bug #47467)

Bugs Fixed

• If using MySQL Server 5.0.x it was not possible to alter stored routines in Visual Studio. If the stored
routine was clicked, and the context sensitive menu option, Alter Routine, selected, the following
error was generated:

Unable to load object with error: Object reference not
set to an instance of an object

(Bug #55170)

• In MySQL Connector/Net, the MySqlConnection.Abort() method contained a try...catch
construct, with an empty catch block. This meant that any exception generated at this point would
not be caught. (Bug #52769)

• If FunctionsReturnString=true was used in the connection string, the decimal separator
(according to locale) was not interpreted. (Bug #52187)

• In MySQL Connector/Net, the LoadCharsetMap() function of the CharSetMap class set the
following incorrect mapping:

mapping.Add("latin1", new CharacterSet("latin1", 1));

This meant that, for example, the Euro sign was not handled correctly.

The correct mapping should have been:

mapping.Add("latin1", new CharacterSet("windows-1252", 1));

This is because MySQL's latin1 character set is the same as the windows-cp1252 character set
and it extends the official ISO 8859-1 or IANA latin1. (Bug #51927)

• A non-terminated string in SQL threw a CLR exception rather than a syntax exception. (Bug #51788)

• When using table per type inheritance and listing the contents of the parent table, the result of the
query was a list of child objects, even though there was no related child record with the same parent
Id. (Bug #49850)

• When calling ExecuteNonQuery on a command object, the following exception occurred:

Index and length must refer to a location within the string.
Parameter name: length

(Bug #51610)

• Binary Columns were not displayed in the Query Builder of Visual Studio. (Bug #50171)

• MySqlCommand.Parameters.Clear() did not work. (Bug #50444)

• When the UpdateBatchSize property was set to a value greater than 1, only the first row was
applied to the database. (Bug #50123)

Changes in MySQL Connector/Net 6.0.5 (2009-11-12)

283

• The method Command.TrimSemicolons used StringBuilder, and therefore allocated memory
for the query even if it did not need to be trimmed. This led to excessive memory consumption when
executing a number of large queries. (Bug #51149)

• A connection string set in web.config could not be reused after Visual Studio 2008 Professional
was shut down. It continued working for the existing controls, but did not work for new controls
added. (Bug #41629)

• When the MySqlScript.execute() method was called, the following exception was generated:

InvalidOperationException : The CommandText property has not been properly initialized.

(Bug #50344)

• A FormatException was generated when an empty string was returned from a stored function.
(Bug #49642)

• MySqlDataReader.GetUInt64 returned an incorrect value when reading a BIGINT UNSIGNED
column containing a value greater than 2147483647. (Bug #49794)

• Calling a User Defined Function using Entity SQL in the Entity Framework caused a
NullReferenceException. (Bug #45277)

• The method MySqlDataReader.GetSchemaTable() returned 0 in the NumericPrecision field
for decimal and newdecimal columns. (Bug #48171)

• Attempting to execute a load data local infile on a file where the user did not have write permissions,
or the file was open in an editor gave an access denied error. (Bug #48944)

• When adding a data set in Visual Studio 2008, the following error was generated:

Relations couldn't be added. Column 'REFERENCED_TABLE_CATALOG' does not belong to table.

This was due to a 'REFERENCED_TABLE_CATALOG' column not being included in the foreign
keys collection. (Bug #48974)

• When trying to create stored procedures from an SQL script, a MySqlException was thrown when
attempting to redefine the DELIMITER:

MySql.Data.MySqlClient.MySqlException was unhandled
Message="You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near 'DELIMITER' at line 1"
Source="MySql.Data"
ErrorCode=-2147467259
Number=1064
StackTrace:
à MySql.Data.MySqlClient.MySqlStream.ReadPacket()
à MySql.Data.MySqlClient.NativeDriver.ReadResult(UInt64& affectedRows, Int64&
lastInsertId)
à MySql.Data.MySqlClient.MySqlDataReader.GetResultSet()
à MySql.Data.MySqlClient.MySqlDataReader.NextResult()
à MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior)
à MySql.Data.MySqlClient.MySqlCommand.ExecuteReader()
à MySql.Data.MySqlClient.MySqlCommand.ExecuteNonQuery()
à MySql.Data.MySqlClient.MySqlScript.Execute()

Note: The MySqlScript class has been fixed to support the delimiter statement as it is found in
SQL scripts. (Bug #46429)

A.7.4. Changes in MySQL Connector/Net 6.0.5 (2009-11-12)

This is a new release, fixing recently discovered bugs.

Bugs Fixed

• Cloning of MySqlCommand was not typesafe. To clone a MySqlCommand it was necessary to do:

Changes in MySQL Connector/Net 6.0.5 (2009-11-12)

284

MySqlCommand clone = (MySqlCommand)((ICloneable)comm).Clone();

MySQL Connector/Net was changed so that it was possible to do:

MySqlCommand clone = comm.Clone();

(Bug #48460)

• An entity model created from a schema containing a table with a column of type UNSIGNED BIGINT
and a view of the table did not behave correctly. When an entity was created and mapped to the
view, the column that was of type UNSIGNED BIGINT was displayed as BIGINT. (Bug #47872)

• It was not possible to retrieve a value from a MySQL server table, if the value was larger than that
supported by the .NET type System.Decimal.

MySQL Connector/Net was changed to expose the MySqlDecimal type, along with the supporting
method GetMySqlDecimal. (Bug #48100)

• If MySqlConnection.GetSchema was called for "Indexes" on a table named “b`a`d” as follows:

DataTable schemaPrimaryKeys = connection.GetSchema(
 "Indexes",
 new string[] { null, schemaName, "b`a`d"});

Then the following exception was generated:

You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near 'a`d`' at line 1

(Bug #48101)

• When loading the MySQLClient-mono.sln file included with the Connector/Net source into Mono
Develop, the following error occurred:

/home/tbedford/connector-net-src/6.1/MySQLClient-mono.sln(22):
Unsupported or unrecognized project:
'/home/tbedford/connector-net-src/6.1/Installer/Installer.wixproj'

If the file was modified to remove this problem, then attempting to build the solution generated the
following error:

/home/tbedford/connector-net-src/6.1/MySql.Data/Provider/Source/Connection.cs(280,46):
error CS0115: `MySql.Data.MySqlClient.MySqlConnection.DbProviderFactory' is marked as an
override but no suitable property found to override

(Bug #47048)

• Input parameters were missing from Stored Procedures when using them with ADO.NET Data
Entities. (Bug #44985)

• Using a DataAdapter with a linked MySqlCommandBuilder the following exception was thrown
when trying to call da.Update(DataRow[] rows):

Connection must be valid and open

(Bug #34657)

• If an error occurred during connection to a MySQL Server, deserializing the error message
from the packet buffer caused a NullReferenceException to be thrown. When the method
MySqlPacket::ReadString() attempted to retrieve the error message, the following line of code
threw the exception:

string s = encoding.GetString(bits, (int)buffer.Position, end - (int)buffer.Position);

This was due to the fact that the encoding field had not been initialized correctly. (Bug #46844)

Changes in MySQL Connector/Net 6.0.5 (2009-11-12)

285

• In the MySqlDataReader class the GetSByte function returned a byte value instead of an sbyte
value. (Bug #46620)

• Calling a Stored Procedure with an output parameter through MySQL Connector/Net resulted in a
memory leak. Calling the same Stored Procedure without an output parameter did not result in a
memory leak. (Bug #36027)

• An exception was generated when using TIMESTAMP columns with the Entity Framework. (Bug
#46311)

• Errors occurred when using the Entity Framework with cultures that used a comma as the decimal
separator. This was because the formatting for SINGLE, DOUBLE and DECIMAL values was not
handled correctly. (Bug #44455)

• When reading data, such as with a MySqlDataAdapter on a MySqlConnection, MySQL
Connector/Net could potentially enter an infinite loop in CompressedStream.ReadNextpacket()
if compression was enabled. (Bug #43678)

• Insert into two tables failed when using the Entity Framework. The exception generated was:

The value given is not an instance of type 'Edm.Int32'

(Bug #45077)

• Conversion of MySQL TINYINT(1) to boolean failed. (Bug #46205, Bug #46359, Bug #41953)

• Calling the Entity Framework SaveChanges() method of any MySQL ORM Entity with a column
type TIME, generated an error message:

Unknown PrimitiveKind Time

(Bug #45457)

• When attempting to connect to MySQL using the Compact Framework version of MySQL Connector/
Net, an IndexOutOfRangeException exception was generated on trying to open the connection.
(Bug #43736)

• The Entity Framework provider was not calling DBSortExpression correctly when the Skip and
Take methods were used, such as in the following statement:

TestModel.tblquarantine.OrderByDescending(q => q.MsgDate).Skip(100).Take(100).ToList();

This resulted in the data being unsorted. (Bug #45723)

• MySQL Connector/Net sometimes hung, without generating an exception. This happened if a read
from a stream failed returning a 0, causing the code in LoadPacket() to enter an infinite loop. (Bug
#46308)

• In the case of long network inactivity, especially when connection pooling was used, connections
were sometimes dropped, for example, by firewalls.

Note: The bugfix introduced a new keepalive parameter, which prevents disconnects by sending
an empty TCP packet after a specified timeout. (Bug #40684)

• The MySQL Connector/Net Profile Provider, MySql.Web.Profile.MySQLProfileProvider,
generated an error when running on Mono. When an attempt was made to save a string in
Profile.Name the string was not saved to the my_aspnet_Profiles table. If an attempt was
made to force the save with Profile.Save() the following error was generated:

Server Error in '/mono' Application

--

Changes in MySQL Connector/Net 6.0.5 (2009-11-12)

286

The requested feature is not implemented.
Description: HTTP 500. Error processing request.

Stack Trace:

System.NotImplementedException: The requested feature is not implemented.
at MySql.Data.MySqlClient.MySqlConnection.EnlistTransaction
(System.Transactions.Transaction transaction) [0x00000]
at MySql.Data.MySqlClient.MySqlConnection.Open () [0x00000]
at MySql.Web.Profile.MySQLProfileProvider.SetPropertyValues
(System.Configuration.SettingsContext context,
System.Configuration.SettingsPropertyValueCollection collection) [0x00000]

--
Version information: Mono Version: 2.0.50727.1433; ASP.NET Version: 2.0.50727.1433

(Bug #46375)

• MySQL Connector/Net CHM documentation stated that MySQL Server 3.23 was supported. (Bug
#42110)

• When populating a MySQL database table in Visual Studio using the Table Editor, if a
VARCHAR(10) column was changed to a VARCHAR(20) column an exception was generated:

SystemArgumentException: DataGridViewComboBoxCell value is not valid.
To replace this default dialog please handle the DataError Event.

(Bug #46100)

• The MySQL Connector/Net 6.0.4 installer failed with an error. The error message generated was:

There is a problem with this Windows Installer package. A DLL required for this
install to complete could not be run. Contact your support personnel or package vendor.

When OK was clicked to acknowledge the error the installer exited. (Bug #45474)

• An error occurred when building MySQL Connector/Net from source code checked out from the
public SVN repository. This happened on Linux using Mono and Nant. The Mono JIT compiler
version was 1.2.6.0. The Nant version was 0.85.

When an attempt was made to build (for example) the MySQL Connector/Net 5.2 branch using the
command:

$ nant -buildfile:Client.build

The following error occurred:

BUILD FAILED

Error loading buildfile.
Encoding name 'Windows-1252' not supported.
Parameter name: name

(Bug #42411)

• When using MySQL Connector/Net 6.0.4 and a MySQL Server 4.1 an exception was generated
when trying to execute:

connection.GetSchema("Columns", ...);

The exception generated was:

'connection.GetSchema("Columns")' threw an exception of type
'System.ArgumentException'System.Data.DataTable {System.ArgumentException}
base{"Input string was not in a correct format.Couldn't store <'Select'> in
NUMERIC_PRECISION Column. Expected type is UInt64."}System.Exception
{System.ArgumentException}

Changes in MySQL Connector/Net 6.0.5 (2009-11-12)

287

(Bug #46270)

• The MySQL Connector/Net method StoredProcedure.GetParameters(string) ignored the
programmer's setting of the UseProcedureBodies option. This broke any application for which
the application's parameter names did not match the parameter names in the Stored Procedure,
resulting in an ArgumentException with the message “Parameter 'foo' not found in the collection.”
and the following stack trace:

MySql.Data.dll!MySql.Data.MySqlClient.MySqlParameterCollection.GetParameterFlexible(stri
ng parameterName = "pStart", bool throwOnNotFound = true) Line 459C#
MySql.Data.dll!MySql.Data.MySqlClient.StoredProcedure.Resolve() Line 157 + 0x25
bytesC#
MySql.Data.dll!MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(System.Data.CommandBeha
vior behavior = SequentialAccess) Line 405 + 0xb bytesC#
MySql.Data.dll!MySql.Data.MySqlClient.MySqlCommand.ExecuteDbDataReader(System.Data.Comma
ndBehavior behavior = SequentialAccess) Line 884 + 0xb bytesC#
System.Data.dll!System.Data.Common.DbCommand.System.Data.IDbCommand.ExecuteReader(System
.Data.CommandBehavior behavior) + 0xb bytes
System.Data.dll!System.Data.Common.DbDataAdapter.FillInternal(System.Data.DataSet
dataset = {System.Data.DataSet}, System.Data.DataTable[] datatables = null, int
startRecord = 0, int maxRecords = 0, string srcTable = "Table", System.Data.IDbCommand
command = {MySql.Data.MySqlClient.MySqlCommand}, System.Data.CommandBehavior behavior) +
0x83 bytes
System.Data.dll!System.Data.Common.DbDataAdapter.Fill(System.Data.DataSet dataSet, int
startRecord, int maxRecords, string srcTable, System.Data.IDbCommand command,
System.Data.CommandBehavior behavior) + 0x120 bytes
System.Data.dll!System.Data.Common.DbDataAdapter.Fill(System.Data.DataSet dataSet) +
0x5f bytes

(Bug #46213)

• The EscapeString code carried out escaping by calling string.Replace multiple times. This
resulted in a performance bottleneck, as for every line a new string was allocated and another was
disposed of by the garbage collector. (Bug #45699)

• In MySQL Connector/Net 6.0.4 using GetProcData generated an error because the
parameters data table was only created if MySQL Server was at least version 6.0.6, or if the
UseProcedureBodies connection string option was set to true.

Also the DeriveParameters command generated a null reference exception. This was because
the parameters data table, which was null, was used in a for each loop. (Bug #45952)

• MySQL Connector/Net generated the following exception:

System.NullReferenceException: Object reference not set to an instance of an object.
 bei MySql.Data.MySqlClient.MySqlCommand.TimeoutExpired(Object commandObject)
 bei System.Threading._TimerCallback.TimerCallback_Context(Object state)
 bei System.Threading.ExecutionContext.runTryCode(Object userData)
 bei
 System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode
 code, CleanupCode backoutCode, Object userData)
 bei System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext,
 ContextCallback callback, Object state)
 bei System.Threading.ExecutionContext.Run(ExecutionContext executionContext,
 ContextCallback callback, Object state)
 bei System.Threading._TimerCallback.PerformTimerCallback(Object state)

(Bug #40005)

• After a Reference to "C:\Program Files\MySQL\MySQL Connector Net 5.2.4\Compact Framework
\MySql.Data.CF.dll" was added to a Windows Mobile 5.0 project, the project then failed to build,
generating a Microsoft Visual C# compiler error.

The error generated was:

Error 2 The type 'System.Runtime.CompilerServices.CompilerGeneratedAttribute'
has no constructors defined MysqlTest

Changes in MySQL Connector/Net 6.0.4 (2009-06-16)

288

Error 3 Internal Compiler Error (0xc0000005 at address 5A7E3714):
likely culprit is 'COMPILE'.

(Bug #42261)

• Adding the Allow Batch=False option to the connection string caused MySQL Connector/Net to
generate the error:

You have an error in your SQL syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use near 'SET character_set_results=NULL' at line 1

(Bug #45502)

• A MySQL Connector/Net test program that connected to MySQL Server using the connection string
option compress=true crashed, but only when running on Mono. The program worked as expected
when running on Microsoft Windows.

This was due to a bug in Mono. MySQL Connector/Net was modified to avoid using
WeakReferences in the Compressed stream class, which was causing the crash. (Bug #45463)

A.7.5. Changes in MySQL Connector/Net 6.0.4 (2009-06-16)

This is the first post-GA release, fixing recently discovered bugs.

Bugs Fixed

• If a certain socket exception occurred when trying to establish a MySQL database connection,
MySQL Connector/Net displayed an exception message that appeared to be unrelated to the
underlying problem. This masked the problem and made diagnosing problems more difficult.

For example, if, when establishing a database connection using TCP/IP, Windows on the local
machine allocated an ephemeral port that conflicted with a socket address still in use, then
Windows/.NET would throw a socket exception with the following error text:

Only one usage of each socket address (protocol/network address/port) is normally
permitted IP ADDRESS/PORT.

However, MySQL Connector/Net masked this socket exception and displayed an exception with the
following text:

Unable to connect to any of the specified MySQL hosts.

(Bug #45021)

• The Data Set editor generated an error when attempts were made to modify insert, update or delete
commands:

Error in WHERE clause near '@'.
Unable to parse query text.

(Bug #44512)

• MySQL Connector/Net was missing the capability to validate the server's certificate when using
encryption. This made it possible to conduct a man-in-the-middle attack against the connection,
which defeated the security provided by SSL. (Bug #38700)

• A SQL query string containing an escaped backslash caused an exception to be generated:

Index and length must refer to a location within the string.
Parameter name: length
at System.String.InternalSubStringWithChecks(Int32 startIndex, Int32 length, Boolean
fAlwaysCopy)
at MySql.Data.MySqlClient.MySqlTokenizer.NextParameter()
at MySql.Data.MySqlClient.Statement.InternalBindParameters(String sql,
MySqlParameterCollection parameters, MySqlPacket packet)

Changes in MySQL Connector/Net 6.0.3 (2009-04-28)

289

at MySql.Data.MySqlClient.Statement.BindParameters()
at MySql.Data.MySqlClient.PreparableStatement.Execute()
at MySql.Data.MySqlClient.MySqlCommand.ExecuteReader(CommandBehavior behavior)
at MySql.Data.MySqlClient.MySqlCommand.ExecuteNonQuery()

(Bug #44960)

• The Microsoft Visual Studio solution file MySQL-VS2005.sln was invalid. Several projects could not
be loaded and thus it was not possible to build MySQL Connector/Net from source. (Bug #44822)

• When creating a new DataSet the following error was generated:

Failed to open a connection to database.
Cannot load type with name 'MySQL.Data.VisualStudio.StoredProcedureColumnEnumerator'

(Bug #44460)

• The DataReader in MySQL Connector/Net 6.0.3 considered a BINARY(16) field as a GUID with a
length of 16. (Bug #44507)

• The MySQL Connector/Net MySQLRoleProvider reported that there were no roles, even when roles
existed. (Bug #44414)

A.7.6. Changes in MySQL Connector/Net 6.0.3 (2009-04-28)

First GA release.

Functionality Added or Changed

• The MySqlTokenizer failed to split fieldnames from values if they were not separated
by a space. This also happened if the string contained certain characters. As a result
MySqlCommand.ExecuteNonQuery raised an index out of range exception.

The resulting errors are illustrated by the following examples. Note, the example statements do not
have delimiting spaces around the = operator.

INSERT INTO anytable SET Text='test--test';

The tokenizer incorrectly interpreted the value as containing a comment.

UPDATE anytable SET Project='123-456',Text='Can you explain this ?',Duration=15 WHERE
 ID=4711;'

A MySqlException was generated, as the ? in the value was interpreted by the tokenizer as a
parameter sign. The error message generated was:

Fatal error encountered during command execution.
EXCEPTION: MySqlException - Parameter '?'' must be defined.

(Bug #44318)

Bugs Fixed

• Column types for SchemaProvider and ISSchemaProvider did not match.

When the source code in SchemaProvider.cs and ISSchemaProvider.cs were compared it
was apparent that they were not using the same column types. The base provider used SQL such
as SHOW CREATE TABLE, while ISSchemaProvider used the schema information tables. Column
types used by the base class were INT64 and the column types used by ISSchemaProvider were
UNSIGNED. (Bug #44123)

• MySQL.Data was not displayed as a Reference inside Microsoft Visual Studio 2008 Professional.

When a new C# project was created in Microsoft Visual Studio 2008 Professional, MySQL.Data was
not displayed when References, Add Reference was selected. (Bug #44141)

Changes in MySQL Connector/Net 6.0.2 (2009-04-07, Beta)

290

A.7.7. Changes in MySQL Connector/Net 6.0.2 (2009-04-07, Beta)

This is a new development release, fixing recently discovered bugs.

Bugs Fixed

• MySQL Connector/Net 6.0.1 did not load in Microsoft Visual Studio 2008 and Visual Studio 2005 Pro.

The following error message was generated:

.NET Framework Data Provider for MySQL: The data provider object factory service was not
found.

(Bug #44064)

A.7.8. Changes in MySQL Connector/Net 6.0.1 (2009-04-02, Beta)

This is a new Beta development release, fixing recently discovered bugs.

Bugs Fixed

• Generating an Entity Data Model (EDM) schema with a table containing columns with data types
MEDIUMTEXT and LONGTEXT generated a runtime error message “Max value too long or too short
for Int32”. (Bug #43480)

• An insert and update error was generated by the decimal data type in the Entity Framework, when a
German collation was used. (Bug #43574)

A.7.9. Changes in MySQL Connector/Net 6.0.0 (2009-03-02, Alpha)

This is a new Alpha development release.

Bugs Fixed

• A null reference exception was generated when MySqlConnection.ClearPool(connection)
was called. (Bug #42801)

A.8. Changes in MySQL Connector/Net Version 5.3

A.8.1. Changes in MySQL Connector/Net 5.3.0 (Not released)

Version 5.3.0 has no changelog entries.

A.9. Changes in MySQL Connector/Net Version 5.2

A.9.1. Changes in MySQL Connector/Net 5.2.8 (Not released)

Version 5.2.8 has no changelog entries.

A.9.2. Changes in MySQL Connector/Net 5.2.7 (2009-07-15)

Bugs Fixed

• The EscapeString code carried out escaping by calling string.Replace multiple times. This
resulted in a performance bottleneck, as for every line a new string was allocated and another was
disposed of by the garbage collector. (Bug #45699)

• MySQL Connector/Net generated the following exception:

System.NullReferenceException: Object reference not set to an instance of an object.
 bei MySql.Data.MySqlClient.MySqlCommand.TimeoutExpired(Object commandObject)
 bei System.Threading._TimerCallback.TimerCallback_Context(Object state)
 bei System.Threading.ExecutionContext.runTryCode(Object userData)

Changes in MySQL Connector/Net 5.2.6 (2009-04-28)

291

 bei
 System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode
 code, CleanupCode backoutCode, Object userData)
 bei System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext,
 ContextCallback callback, Object state)
 bei System.Threading.ExecutionContext.Run(ExecutionContext executionContext,
 ContextCallback callback, Object state)
 bei System.Threading._TimerCallback.PerformTimerCallback(Object state)

(Bug #40005)

• After a Reference to "C:\Program Files\MySQL\MySQL Connector Net 5.2.4\Compact Framework
\MySql.Data.CF.dll" was added to a Windows Mobile 5.0 project, the project then failed to build,
generating a Microsoft Visual C# compiler error.

The error generated was:

Error 2 The type 'System.Runtime.CompilerServices.CompilerGeneratedAttribute'
has no constructors defined MysqlTest
Error 3 Internal Compiler Error (0xc0000005 at address 5A7E3714):
likely culprit is 'COMPILE'.

(Bug #42261)

• If a certain socket exception occurred when trying to establish a MySQL database connection,
MySQL Connector/Net displayed an exception message that appeared to be unrelated to the
underlying problem. This masked the problem and made diagnosing problems more difficult.

For example, if, when establishing a database connection using TCP/IP, Windows on the local
machine allocated an ephemeral port that conflicted with a socket address still in use, then
Windows/.NET would throw a socket exception with the following error text:

Only one usage of each socket address (protocol/network address/port) is normally
permitted IP ADDRESS/PORT.

However, MySQL Connector/Net masked this socket exception and displayed an exception with the
following text:

Unable to connect to any of the specified MySQL hosts.

(Bug #45021)

• A MySQL Connector/Net test program that connected to MySQL Server using the connection string
option compress=true crashed, but only when running on Mono. The program worked as expected
when running on Microsoft Windows.

This was due to a bug in Mono. MySQL Connector/Net was modified to avoid using
WeakReferences in the Compressed stream class, which was causing the crash. (Bug #45463)

• The Microsoft Visual Studio solution file MySQL-VS2005.sln was invalid. Several projects could not
be loaded and thus it was not possible to build MySQL Connector/Net from source. (Bug #44822)

• The MySQL Connector/Net MySQLRoleProvider reported that there were no roles, even when roles
existed. (Bug #44414)

• When a TableAdapter was created on a DataSet, it was not possible to use a stored procedure with
variables. The following error was generated:

The method or operation is not implemented

(Bug #39409)

A.9.3. Changes in MySQL Connector/Net 5.2.6 (2009-04-28)

Functionality Added or Changed

Changes in MySQL Connector/Net 5.2.6 (2009-04-28)

292

• A new connection string option has been added: use affected rows. When true the connection
will report changed rows instead of found rows. (Bug #44194)

Bugs Fixed

• Calling GetSchema() on Indexes or IndexColumns failed where index or column names were
restricted.

In SchemaProvider.cs, methods GetIndexes() and GetIndexColumns() passed their
restrictions directly to GetTables(). This only worked if the restrictions were no more specific than
schemaName and tableName. If IndexName was given, this was passed to GetTables() where it
was treated as TableType. As a result no tables were returned, unless the index name happened to
be BASE TABLE or VIEW. This meant that both methods failed to return any rows. (Bug #43991)

• GetSchema("MetaDataCollections") should have returned a table with a column named
“NumberOfRestrictions” not “NumberOfRestriction”.

This can be confirmed by referencing the Microsoft Documentation. (Bug #43990)

• Requests sent to the MySQL Connector/Net role provider to remove a user from a role failed. The
query log showed the query was correctly executed within a transaction which was immediately
rolled back. The rollback was caused by a missing call to the Complete method of the transaction.
(Bug #43553)

• A null reference exception was generated when MySqlConnection.ClearPool(connection)
was called. (Bug #42801)

• The GetGuid() method of MySqlDataReader did not treat BINARY(16) column data as a GUID.
When operating on such a column a FormatException exception was generated. (Bug #41452)

• When using MySqlBulkLoader.Load(), the text file is opened by
NativeDriver.SendFileToServer. If it encountered a problem opening the file as a stream,
an exception was generated and caught. An attempt to clean up resources was then made in the
finally{} clause by calling fs.Close(), but since the stream was never successfully opened,
this was an attempt to execute a method of a null reference. (Bug #43332)

• MySQLMembershipProvider.ValidateUser only used the userId to validate. However, it
should also use the applicationId to perform the validation correctly.

The generated query was, for example:

SELECT Password, PasswordKey, PasswordFormat, IsApproved, Islockedout
 FROM my_aspnet_Membership WHERE userId=13

Note that applicationId is not used. (Bug #42574)

• When ASP.NET membership was configured to not require password question and answer using
requiresQuestionAndAnswer="false", a SqlNullValueException was generated when
using MembershipUser.ResetPassword() to reset the user password. (Bug #41408)

• There was an error in the ProfileProvider class in the private ProfileInfoCollection
GetProfiles() function. The column of the final table was named “lastUpdatdDate” ('e' is missing)
instead of the correct “lastUpdatedDate”. (Bug #41654)

• When MySql.Web.Profile.MySQLProfileProvider was configured, it was not possible to
assign a name other than the default name MySQLProfileProvider.

If the name SCC_MySQLProfileProvider was assigned, an exception was generated when
attempting to use Page.Context.Profile['custom prop'].

The exception generated was:

The profile default provider was not found.

http://msdn.microsoft.com/en-us/library/system.data.common.dbmetadatacolumnnames.numberofrestrictions.aspx

Changes in MySQL Connector/Net 5.2.5 (2008-11-19)

293

Note that the exception stated: 'the profile default provider...', even though a different name was
explicitly requested. (Bug #40871)

• If a Stored Procedure contained spaces in its parameter list, and was then called from MySQL
Connector/Net, an exception was generated. However, the same Stored Procedure called from
the MySQL Query Analyzer or the MySQL Client worked correctly.

The exception generated was:

Parameter '0' not found in the collection.

(Bug #41034)

• The DATETIME format contained an erroneous space. (Bug #41021)

• When ExecuteNonQuery was called with a command type of Stored Procedure it worked for
one user but resulted in a hang for another user with the same database permissions.

However, if CALL was used in the command text and ExecuteNonQuery was used with a
command type of Text, the call worked for both users. (Bug #40139)

A.9.4. Changes in MySQL Connector/Net 5.2.5 (2008-11-19)

Bugs Fixed

• Visual Studio 2008 displayed the following error three times on start-up:

"Package Load Failure

Package 'MySql.Data.VisualStudio.MySqlDataProviderPackage, MySql.VisualStudio,
Version=5.2.4, Culture=neutral, PublicKeyToken=null' has failed to load properly (GUID =
{79A115C9-B133-4891-9E7B-242509DAD272}). Please contact the package vendor for
assistance. Application restart is recommended, due to possible environment corruption.
Would you like to disable loading the package in the future? You may use
'devenve/resetskippkgs' to re-enable package loading."

(Bug #40726)

A.9.5. Changes in MySQL Connector/Net 5.2.4 (2008-11-13)

Bugs Fixed

• MySqlDataReader did not feature a GetSByte method. (Bug #40571)

• GetDefaultCollation and GetMaxLength were not thread safe. These functions called the
database to get a set of parameters and cached them in two static dictionaries in the function
InitCollections. However, if many threads called them they would try to insert the same keys in
the collections resulting in duplicate key exceptions. (Bug #40231)

• The connection string option Functions Return String did not set the correct encoding for the
result string. Even though the connection string option Functions Return String=true; is
set, the result of SELECT DES_DECRYPT() contained “??” instead of the correct national character
symbols. (Bug #40076)

• When working with stored procedures MySQL Connector/Net generated an exception Unknown
"table parameters" in information_schema. (Bug #40382)

• If connection pooling was not set explicitly in the connection string, MySQL Connector/Net added
“;Pooling=False” to the end of the connection string when MySqlCommand.ExecuteReader() was
called.

If connection pooling was explicitly set in the connection string, when MySqlConnection.Open()
was called it converted “Pooling=True” to “pooling=True”.

http://dev.mysql.com/doc/refman/5.5/en/call.html

Changes in MySQL Connector/Net 5.2.3 (2008-08-19)

294

If MySqlCommand.ExecuteReader() was subsequently called, it concatenated “;Pooling=False”
to the end of the connection string. The resulting connection string was thus terminated with
“pooling=True;Pooling=False”. This disabled connection pooling completely. (Bug #40091)

• After the ConnectionString property was initialized using the public setter
of DbConnectionStringBuilder, the GetConnectionString method of
MySqlConnectionStringBuilder incorrectly returned null when true was assigned to the
includePass parameter. (Bug #39728)

• If, when using the MySqlTransaction transaction object, an exception was thrown, the transaction
object was not disposed of and the transaction was not rolled back. (Bug #39817)

• When using ProfileProvider, attempting to update a previously saved property failed. (Bug
#39330)

• Reading a negative time value greater than -01:00:00 returned the absolute value of the original time
value. (Bug #39294)

• Inserting a negative time value (negative TimeSpan) into a Time column through the use of
MySqlParameter caused MySqlException to be thrown. (Bug #39275)

• The Web Provider did not work at all on a remote host, and did not create a database when using
autogenerateschema="true". (Bug #39072)

• MySQL Connector/Net called hashed password methods not supported in Mono 2.0 Preview 2. (Bug
#38895)

• When a data connection was created in the server explorer of Visual Studio 2008 Team, an error
was generated when trying to expand stored procedures that had parameters.

Also, if TableAdapter was right-clicked and then Add, Query, Use Existing Stored Procedures
selected, if you then attempted to select a stored procedure, the window would close and no error
message would be displayed. (Bug #39252)

A.9.6. Changes in MySQL Connector/Net 5.2.3 (2008-08-19)

Functionality Added or Changed

• String escaping functionality has been moved from the MySqlString class to the MySqlHelper
class, where it can be accessed by the EscapeString method. (Bug #36205)

• Error string was returned after a 28000 second wait_timeout. This has been changed to generate
a ConnectionState.Closed event. (Bug #38119)

• Changed how the procedure schema collection is retrieved. If use procedure bodies=true
then the mysql.proc table is selected directly as this is up to 50 times faster than the current
information_schema implementation. If use procedure bodies=false, then the
information_schema collection is queried. (Bug #36694)

Bugs Fixed

• MySQL Connector/Net uninstaller did not clean up all installed files. (Bug #38534)

• The GetOrdinal() method failed to return the ordinal if the column name string contained an
accent. (Bug #38721)

• GetSchema did not work correctly when querying for a collection, if using a non-English locale. (Bug
#35459)

• There was a short circuit evaluation error in the MySqlCommand.CheckState() method. When the
statement connection == null was true a NullReferenceException was thrown and not the
expected InvalidOperationException. (Bug #38276)

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_wait_timeout

Changes in MySQL Connector/Net 5.2.2 (2008-05-12)

295

• The provider did not silently create the user if the user did not exist. (Bug #38243)

• When reading back a stored double or single value using the .NET provider, the value had less
precision than the one stored. (Bug #33322)

• Unnecessary network traffic was generated for the normal case where the web provider schema was
up to date. (Bug #37469)

• Executing a command that resulted in a fatal exception did not close the connection. (Bug #37991)

• When a prepared insert query is run that contains an UNSIGNED TINYINT in the parameter list, the
complete query and data that should be inserted is corrupted and no error is thrown. (Bug #37968)

• In a .NET application MySQL Connector/Net modifies the connection string so that it contains several
occurrences of the same option with different values. This is illustrated by the example that follows.

The original connection string:

host=localhost;database=test;uid=*****;pwd=*****;
connect timeout=25; auto enlist=false;pooling=false;

The connection string after closing MySqlDataReader:

host=localhost;database=test;uid=*****;pwd=*****;
connect timeout=25;auto enlist=false;pooling=false;
Allow User Variables=True;Allow User Variables=False;
Allow User Variables=True;Allow User Variables=False;

(Bug #37955)

• MySqlReader.GetOrdinal() performance enhancements break existing functionality. (Bug
#37239)

• The autogenerateschema option produced tables with incorrect collations. (Bug #36444)

• Using the MySQL Visual Studio plugin and a MySQL 4.1 server, certain field types (ENUM) would
not be identified correctly. Also, when looking for tables, the plugin would list all tables matching a
wildcard pattern of the database name supplied in the connection string, instead of only tables within
the specified database. (Bug #30603)

A.9.7. Changes in MySQL Connector/Net 5.2.2 (2008-05-12)

Bugs Fixed

• Product documentation incorrectly stated '?' is the preferred parameter marker. (Bug #37349)

• There was a high level of contention in the connection pooling code that could lead to delays when
opening connections and submitting queries. The connection pooling code has been modified to try
and limit the effects of the contention issue. (Bug #34001)

• An incorrect value for a bit field would returned in a multi-row query if a preceding value for the field
returned NULL. (Bug #36313)

• When using the MySQLProfileProvider, setting profile details and then reading back saved data
would result in the default values being returned instead of the updated values. (Bug #36000)

• The DbCommandBuilder.QuoteIdentifer method was not implemented. (Bug #35492)

• Tables with GEOMETRY field types would return an unknown data type exception. (Bug #36081)

• When creating a connection, setting the ConnectionString property of MySqlConnection to
NULL would throw an exception. (Bug #35619)

• When using encrypted passwords, the GetPassword() function would return the wrong string. (Bug
#35336)

http://dev.mysql.com/doc/refman/5.5/en/enum.html

Changes in MySQL Connector/Net 5.2.1 (2008-02-27)

296

• An error would be raised when calling GetPassword() with a NULL value. (Bug #35332)

• When retrieving data where a field has been identified as containing a GUID value, the incorrect
value would be returned when a previous row contained a NULL value for that field. (Bug #35041)

• When using SqlDataSource to open a connection, the connection would not automatically be
closed when access had completed. (Bug #34460)

• When creating a new stored procedures, the new parameter code which permits the use of the @
symbol would interfere with the specification of a DEFINER. (Bug #34940)

• Using the TableAdapter Wizard would fail when generating commands that used stored
procedures due to the change in supported parameter characters. (Bug #34941)

• Using the TableAdapter wizard in combination with a suitable SELECT statement, only the
associated INSERT statement would also be created, rather than the required DELETE and UPDATE
statements. (Bug #31338)

• Fixed profile provider that would throw an exception if you were updating a profile that already
existed.

• Fixed problem in datagrid code related to creating a new table. This problem may have been
introduced with .NET 2.0 SP1.

A.9.8. Changes in MySQL Connector/Net 5.2.1 (2008-02-27)

Bugs Fixed

• A race condition could occur within the procedure cache resulting the cache contents overflowing
beyond the configured cache size. (Bug #34338)

• When altering a stored procedure within Visual Studio, the parameters to the procedure could be
lost. (Bug #34359)

• Attempting to use an isolation level other than the default with a transaction scope would use the
default isolation level. (Bug #34448)

• A number of issues were identified in the case, connection and schema areas of the code for
MembershipProvider, RoleProvider, ProfileProvider. (Bug #34495)

• When executing statements that used stored procedures and functions, the new parameter code
could fail to identify the correct parameter format. (Bug #34699)

• When using web providers, the MySQL Connector/Net would check the schema and cache the
application id, even when the connection string had been set. The effect would be to break the
membership provider list. (Bug #34451)

• The installer would fail to the DDEX provider binary if the Visual Studio 2005 component was not
selected. The result would lead to MySQL Connector/Net not loading properly when using the
interface to a MySQL server within Visual Studio. (Bug #34674)

• When using the provider to generate or update users and passwords, the password checking
algorithm would not validate the password strength or requirements correctly. (Bug #34792)

• The provider code has been updated to fix a number of outstanding issues.

• Fixed problem with Visual Studio 2008 integration that caused pop-up menus on server explorer
nodes to not function

A.9.9. Changes in MySQL Connector/Net 5.2.0 (2008-02-11)

Functionality Added or Changed

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html

Changes in MySQL Connector/Net Version 5.1

297

• Performing GetValue() on a field TINYINT(1) returned a BOOLEAN. While not a bug, this caused
problems in software that expected an INT to be returned. A new connection string option Treat
Tiny As Boolean has been added with a default value of true. If set to false the provider will
treat TINYINT(1) as INT. (Bug #34052)

• Added ClearPool and ClearAllPools features.

• DDEX provider now works under Visual Studio 2008 beta 2.

• Added support for DbDataAdapter UpdateBatchSize. Batching is fully supported including
collapsing inserts down into the multi-value form if possible.

Bugs Fixed

• In an open connection where the server had disconnected unexpectedly, the status information of
the connection would not be updated properly. (Bug #33909)

• The status of connections reported through the state change handler was not being updated
correctly. (Bug #34082)

• When accessing tables from different databases within the same TransactionScope, the same
user/password combination would be used for each database connection. MySQL Connector/Net
does not handle multiple connections within the same transaction scope. An error is now returned if
you attempt this process, instead of using the incorrect authorization information. (Bug #34204)

• Some speed improvements have been implemented in the TokenizeSql process used to identify
elements of SQL statements. (Bug #34220)

• Incorporated some connection string cache optimizations sent to us by Maxim Mass. (Bug #34000)

• Using compression in the MySQL connection with MySQL Connector/Net would be slower than using
native (uncompressed) communication. (Bug #27865)

• Commands executed from within the state change handler would fail with a NULL exception. (Bug
#30964)

• Memory usage could increase and decrease significantly when updating or inserting a large number
of rows. (Bug #31090)

• Column name metadata was not using the character set as defined within the connection string
being used. (Bug #31185)

• Data cached from the connection string could return invalid information because the internal routines
were not using case-sensitive semantics. This lead to updated connection string options not being
recognized if they were of a different case than the existing cached values. (Bug #31433)

• When running a stored procedure multiple times on the same connection, the memory usage could
increase indefinitely. (Bug #30116)

• The MySqlDbType.Datetime has been replaced with MySqlDbType.DateTime. The old format
has been obsoleted. (Bug #26344)

A.10. Changes in MySQL Connector/Net Version 5.1

A.10.1. Changes in MySQL Connector/Net 5.1.8 (Not released)

Version 5.1.8 has no changelog entries.

A.10.2. Changes in MySQL Connector/Net 5.1.7 (2008-08-21)

Bugs Fixed

http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html

Changes in MySQL Connector/Net 5.1.6 (2008-05-12)

298

• GetSchema did not work correctly when querying for a collection, if using a non-English locale. (Bug
#35459)

• There was a short circuit evaluation error in the MySqlCommand.CheckState() method. When the
statement connection == null was true a NullReferenceException was thrown and not the
expected InvalidOperationException. (Bug #38276)

• When reading back a stored double or single value using the .NET provider, the value had less
precision than the one stored. (Bug #33322)

• Documentation incorrectly stated that “the DataColumn class in .NET 1.0 and 1.1 does not permit
columns with type of UInt16, UInt32, or UInt64 to be autoincrement columns”. (Bug #37350)

• As MySqlDbType.DateTime is not available in VB.Net the warning The datetime enum
value is obsolete was always shown during compilation. (Bug #37406)

• An unknown MySqlErrorCode was encountered when opening a connection with an incorrect
password. (Bug #37398)

• Executing a command that resulted in a fatal exception did not close the connection. (Bug #37991)

• In a .NET application MySQL Connector/Net modifies the connection string so that it contains several
occurrences of the same option with different values. This is illustrated by the example that follows.

The original connection string:

host=localhost;database=test;uid=*****;pwd=*****;
connect timeout=25; auto enlist=false;pooling=false;

The connection string after closing MySqlDataReader:

host=localhost;database=test;uid=*****;pwd=*****;
connect timeout=25;auto enlist=false;pooling=false;
Allow User Variables=True;Allow User Variables=False;
Allow User Variables=True;Allow User Variables=False;

(Bug #37955)

• SemaphoreFullException is generated when application is closed. (Bug #36688)

• Using the MySQL Visual Studio plugin and a MySQL 4.1 server, certain field types (ENUM) would
not be identified correctly. Also, when looking for tables, the plugin would list all tables matching a
wildcard pattern of the database name supplied in the connection string, instead of only tables within
the specified database. (Bug #30603)

A.10.3. Changes in MySQL Connector/Net 5.1.6 (2008-05-12)

Bugs Fixed

• An incorrect value for a bit field would returned in a multi-row query if a preceding value for the field
returned NULL. (Bug #36313)

• The DbCommandBuilder.QuoteIdentifer method was not implemented. (Bug #35492)

• When creating a connection pool, specifying an invalid IP address will cause the entire application to
crash, instead of providing an exception. (Bug #36432)

• The MembershipProvider will raise an exception when the connection string is configured with
enablePasswordRetrival = true and RequireQuestionAndAnswer = false. (Bug
#36159)

• When calling GetNumberOfUsersOnline an exception is raised on the submitted query due to a
missing parameter. (Bug #36157)

http://dev.mysql.com/doc/refman/5.5/en/enum.html

Changes in MySQL Connector/Net 5.1.5 (Not released)

299

• Tables with GEOMETRY field types would return an unknown data type exception. (Bug #36081)

• When creating a connection, setting the ConnectionString property of MySqlConnection to
NULL would throw an exception. (Bug #35619)

• A race condition could occur within the procedure cache resulting the cache contents overflowing
beyond the configured cache size. (Bug #34338)

• When altering a stored procedure within Visual Studio, the parameters to the procedure could be
lost. (Bug #34359)

• Attempting to use an isolation level other than the default with a transaction scope would use the
default isolation level. (Bug #34448)

• When using SqlDataSource to open a connection, the connection would not automatically be
closed when access had completed. (Bug #34460)

• Using the TableAdapter wizard in combination with a suitable SELECT statement, only the
associated INSERT statement would also be created, rather than the required DELETE and UPDATE
statements. (Bug #31338)

A.10.4. Changes in MySQL Connector/Net 5.1.5 (Not released)

Version 5.1.5 has no changelog entries.

A.10.5. Changes in MySQL Connector/Net 5.1.4 (2007-11-20)

Bugs Fixed

• Trying to use a connection that was not open could return an ambiguous and misleading error
message. (Bug #31262)

• A syntax error in a set of batch statements could leave the data adapter in a state that appears hung.
(Bug #31930)

• When accessing certain statements, the command would timeout before the command completed.
Because this cannot always be controlled through the individual command timeout options, a
default command timeout has been added to the connection string options. (Bug #27958)

• MySQL Connector/Net would incorrectly report success when enlisting in a distributed transaction,
although distributed transactions are not supported. (Bug #31703)

• A date string could be returned incorrectly by MySqlDateTime.ToString() when the date
returned by MySQL was 0000-00-00 00:00:00. (Bug #32010)

• Commands executed from within the state change handler would fail with a NULL exception. (Bug
#30964)

• Memory usage could increase and decrease significantly when updating or inserting a large number
of rows. (Bug #31090)

• Column name metadata was not using the character set as defined within the connection string
being used. (Bug #31185)

• Data cached from the connection string could return invalid information because the internal routines
were not using case-sensitive semantics. This lead to updated connection string options not being
recognized if they were of a different case than the existing cached values. (Bug #31433)

• Installing over a failed uninstall of a previous version could result in multiple clients being registered
in the machine.config. This would prevent certain aspects of the MySQL connection within Visual
Studio to work properly. (Bug #31731)

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html

Changes in MySQL Connector/Net 5.1.3 (2007-09-21, Beta)

300

• Creation of parameter objects with noninput direction using a constructor would fail. This was cause
by some old legacy code preventing their use. (Bug #32093)

• Setting the size of a string parameter after the value could cause an exception. (Bug #32094)

• Changing the connection string of a connection to one that changes the parameter marker after
the connection had been assigned to a command but before the connection is opened could cause
parameters to not be found. (Bug #13991)

• Column types with only 1-bit (such as BOOLEAN and TINYINT(1) were not returned as boolean
fields. (Bug #27959)

• When running a stored procedure multiple times on the same connection, the memory usage could
increase indefinitely. (Bug #30116)

• The MySqlDbType.Datetime has been replaced with MySqlDbType.DateTime. The old format
has been obsoleted. (Bug #26344)

• The server error code was not updated in the Data[] hash, which prevented DbProviderFactory
users from accessing the server error code. (Bug #27436)

• Extracting data through XML functions within a query returns the data as System.Byte[]. This
was due to MySQL Connector/Net incorrectly identifying BLOB fields as binary, rather than text. (Bug
#30233)

A.10.6. Changes in MySQL Connector/Net 5.1.3 (2007-09-21, Beta)

This is a new Beta development release, fixing recently discovered bugs.

Bugs Fixed

• An incorrect ConstraintException could be raised on an INSERT when adding rows to a table
with a multiple-column unique key index. (Bug #30204)

• The availability of a MySQL server would not be reset when using pooled connections
(pooling=true). This would lead to the server being reported as unavailable, even if the server
become available while the application was still running. (Bug #29409)

• Calling SHOW CREATE PROCEDURE for routines with a hyphen in the catalog name produced a
syntax error. (Bug #29526)

• Using the membership/role providers when validationKey or decryptionKey parameters are
set to AutoGenerate, an exception would be raised when accessing the corresponding values.
(Bug #29235)

• Visual Studio Plugin: Adding a new query based on a stored procedure that uses the SELECT
statement would terminate the query/TableAdapter wizard. (Bug #29098)

• An exception would be thrown when using the Manage Role functionality within the web
administrator to assign a role to a user. (Bug #29236)

• Using TransactionScope would cause an InvalidOperationException. (Bug #28709)

• The Saudi Hijri calendar was not supported. (Bug #29931)

• A DATE field would be updated with a date/time value, causing a MySqlDataAdapter.Update()
exception. (Bug #30077)

• Connecting to a MySQL server earlier than version 4.1 would raise a NullException. (Bug
#29476)

• Certain operations would not check the UsageAdvisor setting, causing log messages from the
Usage Advisor even when it was disabled. (Bug #29124)

http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/show-create-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/Net 5.1.2 (2007-06-18)

301

• Using the same connection string multiple times would result in Database=dbname appearing
multiple times in the resulting string. (Bug #29123)

• A FormatException error would be raised if a parameter had not been found, instead of
Resources.ParameterMustBeDefined. (Bug #29312)

A.10.7. Changes in MySQL Connector/Net 5.1.2 (2007-06-18)

This is a new Beta development release, fixing recently discovered bugs.

Bugs Fixed

• Creating a user would fail due to the application name being set incorrectly. (Bug #28648)

• Accessing the results from a large query when using data compression in the connection would fail
to return all the data. (Bug #28204)

• Visual Studio Plugin: Query Builder would fail to show TINYTEXT columns, and any columns listed
after a TINYTEXT column correctly. (Bug #28437)

• Visual Studio Plugin: Adding a new query based on a stored procedure that used a UPDATE, INSERT
or DELETE statement would terminate the query/TableAdapter wizard. (Bug #28536)

• Log messages would be truncated to 300 bytes. (Bug #28706)

• Visual Studio Plugin: Update commands would not be generated correctly when using the
TableAdapter wizard. (Bug #26347)

A.10.8. Changes in MySQL Connector/Net 5.1.1 (2007-05-23)

Bugs Fixed

• Running the statement SHOW PROCESSLIST would return columns as byte arrays instead of native
columns. (Bug #28448)

• Building a connection string within a tight loop would show slow performance. (Bug #28167)

• Using MySQLDataAdapter.FillSchema() on a stored procedure would raise an exception:
Invalid attempt to access a field before calling Read(). (Bug #27668)

• Fixed password property on MySqlConnectionStringBuilder to use PasswordPropertyText
attribute. This causes dots to show instead of actual password text.

• Installation of the MySQL Connector/Net on Windows would fail if VisualStudio had not already been
installed. (Bug #28260)

• DATETIME fields from versions of MySQL before 4.1 would be incorrectly parsed, resulting in a
exception. (Bug #23342)

• The UNSIGNED flag for parameters in a stored procedure would be ignored when using
MySqlCommandBuilder to obtain the parameter information. (Bug #27679)

• MySQL Connector/Net would look for the wrong table when executing User.IsRole(). (Bug
#28251)

A.10.9. Changes in MySQL Connector/Net 5.1.0 (2007-05-01)

Functionality Added or Changed

• Added Membership and Role provider contributed by Sean Wright (thanks!).

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/Net Version 5.0

302

• GetSchema will now report objects relative to the currently selected database. What this means is
that passing in null as a database restriction will report objects on the currently selected database
only.

• Rewrote stored procedure parsing code using a new SQL tokenizer. Really nasty procedures
including nested comments are now supported.

• Now compiles for .NET CF 2.0.

A.11. Changes in MySQL Connector/Net Version 5.0

A.11.1. Changes in MySQL Connector/Net 5.0.10 (Not released)

Version 5.0.10 has no changelog entries.

A.11.2. Changes in MySQL Connector/Net 5.0.9 (Not released)

Version 5.0.9 has no changelog entries.

A.11.3. Changes in MySQL Connector/Net 5.0.8 (2007-08-21)

Note

This version introduces a new installer technology.

Bugs Fixed

• Fixed some serious issues with command timeout and cancel that could present as exceptions about
thread ownership. The issue was that not all queries cancel the same. Some produce resultsets
while others don't. ExecuteReader had to be changed to check for this.

• An incorrect ConstraintException could be raised on an INSERT when adding rows to a table
with a multiple-column unique key index. (Bug #30204)

• The availability of a MySQL server would not be reset when using pooled connections
(pooling=true). This would lead to the server being reported as unavailable, even if the server
become available while the application was still running. (Bug #29409)

• Fixed bug where MySQL Connector/Net was hand building some date time patterns rather than
using the patterns provided under CultureInfo. This caused problems with some calendars that do
not support the same ranges as Gregorian.. (Bug #29931)

• Fixed problem where a command timing out just after it actually finished would cause an exception to
be thrown on the command timeout thread which would then be seen as an unhandled exception.

• Fixed problem where any attempt to not read all the records returned from a select where each row
of the select is greater than 1024 bytes would hang the driver.

• Accessing the results from a large query when using data compression in the connection will fail to
return all the data. (Bug #28204)

• Calling SHOW CREATE PROCEDURE for routines with a hyphen in the catalog name produced a
syntax error. (Bug #29526)

• Fixed the database schema collection so that it works on servers that are not properly respecting the
lower_case_table_names setting.

• A DATE field would be updated with a date/time value, causing a MySqlDataAdapter.Update()
exception. (Bug #30077)

• Log messages would be truncated to 300 bytes. (Bug #28706)

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/show-create-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_lower_case_table_names
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/Net 5.0.7 (2007-05-18)

303

• Certain operations would not check the UsageAdvisor setting, causing log messages from the
Usage Advisor even when it was disabled. (Bug #29124)

• Fixed problem where we were not closing prepared statement handles when commands are
disposed. This could lead to using up all prepared statement handles on the server.

• Fixed problem where MySqlConnection.BeginTransaction checked the drivers status var
before checking if the connection was open. The result was that the driver could report an invalid
condition on a previously opened connection.

• Extracting data through XML functions within a query returns the data as System.Byte[]. This
was due to MySQL Connector/Net incorrectly identifying BLOB fields as binary, rather than text. (Bug
#30233)

• Using the same connection string multiple times would result in Database=dbname appearing
multiple times in the resulting string. (Bug #29123)

• A FormatException error would be raised if a parameter had not been found, instead of
Resources.ParameterMustBeDefined. (Bug #29312)

A.11.4. Changes in MySQL Connector/Net 5.0.7 (2007-05-18)

Bugs Fixed

• When cloning an open MySqlClient.MySqlConnection with the Persist Security
Info=False option set, the cloned connection is not usable because the security information has
not been cloned. (Bug #27269)

• Running the statement SHOW PROCESSLIST would return columns as byte arrays instead of native
columns. (Bug #28448)

• Enlisting a null transaction would affect the current connection object, such that further enlistment
operations to the transaction are not possible. (Bug #26754)

• The CreateFormat column of the DataTypes collection did not contain a format specification for
creating a new column type. (Bug #25947)

• Using logging (with the logging=true parameter to the connection string) would not generate a log
file. (Bug #27765)

• Building a connection string within a tight loop would show slow performance. (Bug #28167)

• The characterset property would not be identified during a connection (also affected Visual
Studio Plugin). (Bug #26147, Bug #27240)

• Using MySQLDataAdapter.FillSchema() on a stored procedure would raise an exception:
Invalid attempt to access a field before calling Read(). (Bug #27668)

• Attempting to change the Connection Protocol property within a PropertyGrid control would
raise an exception. (Bug #26472)

• DATETIME fields from versions of MySQL before 4.1 would be incorrectly parsed, resulting in a
exception. (Bug #23342)

• The UNSIGNED flag for parameters in a stored procedure would be ignored when using
MySqlCommandBuilder to obtain the parameter information. (Bug #27679)

• If you close an open connection with an active transaction, the transaction is not automatically rolled
back. (Bug #27289)

A.11.5. Changes in MySQL Connector/Net 5.0.6 (2007-03-22)

Bugs Fixed

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/Net 5.0.5 (2007-03-07)

304

• cmd.Parameters.RemoveAt("Id") will cause an error if the last item is requested. (Bug #27187)

• MySqlParameterCollection and parameters added with Insert method can not be retrieved
later using ParameterName. (Bug #27135)

• MySQL Visual Studio Plugin 1.1.2 does not work with MySQL Connector/Net 5.0.5. (Bug #26960)

• Exception thrown when using large values in UInt64 parameters. (Bug #27093)

• Publisher listed in "Add/Remove Programs" is not consistent with other MySQL products. (Bug
#27253)

• DESCRIBE SQL statement returns byte arrays rather than data on MySQL versions older than
4.1.15. (Bug #27221)

A.11.6. Changes in MySQL Connector/Net 5.0.5 (2007-03-07)

Functionality Added or Changed

• Added Use Procedure Bodies connection string option to enable calling procedures without
using procedure metadata.

• Fixed problem with calling stored functions when a return parameter was not given.

• Fixed problem with parameter name hashing where the hashes were not getting updated when
parameters were removed from the collection.

• Return parameters created with DeriveParameters now have the name RETURN_VALUE.

• Added MySqlParameterCollection.AddWithValue and marked the Add(name, value)
method as obsolete.

• Fixed problem that prevented use of SchemaOnly or SingleRow command behaviors with stored
procedures or prepared statements.

• Assembly now properly appears in the Visual Studio 2005 Add/Remove Reference dialog.

• Reverted behavior that required parameter names to start with the parameter marker. We apologize
for this back and forth but we mistakenly changed the behavior to not match what SqlClient
supports. We now support using either syntax for adding parameters however we also respond
exactly like SqlClient in that if you ask for the index of a parameter using a syntax different from
when you added the parameter, the result will be -1.

Bugs Fixed

• Applications would crash when calling with CommandType set to StoredProcedure.

• BINARY and VARBINARY columns would be returned as a string, not binary, data type. (Bug #25605)

• MySqlConnection throws an exception when connecting to MySQL v4.1.7. (Bug #25726)

• Incorrect values/formats would be applied when the OldSyntax connection string option was used.
(Bug #25950)

• High CPU utilization would be experienced when there is no idle connection waiting when using
pooled connections through MySqlPool.GetConnection. (Bug #24373)

• Opening a connection would be slow due to host name lookup. (Bug #26152)

• The UpdateRowSource.FirstReturnedRecord method does not work. (Bug #25569)

• When closing and then re-opening a connection to a database, the character set specification is lost.
(Bug #25614)

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html

Changes in MySQL Connector/Net 5.0.4 (Not released)

305

• Filling a table schema through a stored procedure triggers a runtime error. (Bug #25609)

• Returned data types of a DataTypes collection do not contain the right correct CLR data type. (Bug
#25907)

• When connecting to a MySQL Server earlier than version 4.1, the connection would hang when
reading data. (Bug #25458)

• Registry would be incorrectly populated with installation locations. (Bug #25928)

• MySqlConnection.GetSchema fails with NullReferenceException for Foreign Keys. (Bug
#26660)

• Times with negative values would be returned incorrectly. (Bug #25912)

• MySQL Connector/Net would not compile properly when used with Mono 1.2. (Bug #24263)

• MySQL Connector/Net would fail to install under Windows Vista. (Bug #26430)

• Using ExecuteScalar() with more than one query, where one query fails, will hang the
connection. (Bug #25443)

• When a MySqlConversionException is raised on a remote object, the client application would
receive a SerializationException instead. (Bug #24957)

• A critical ConnectionPool error would result in repeated System.NullReferenceException.
(Bug #25603)

• When connecting to a server, the return code from the connection could be zero, even though the
host name was incorrect. (Bug #24802)

• GetSchema and DataTypes would throw an exception due to an incorrect table name. (Bug
#25906)

• SELECT did not work correctly when using a WHERE clause containing a UTF-8 string. (Bug #25651)

A.11.7. Changes in MySQL Connector/Net 5.0.4 (Not released)

This is a new Beta development release, fixing recently discovered bugs.

Version 5.0.4 has no changelog entries.

A.11.8. Changes in MySQL Connector/Net 5.0.3 (2007-01-05)

Functionality Added or Changed

• SSL support has been updated.

• The ShapZipLib library has been replaced with the deflate support provided within .NET 2.0.

• Support for the embedded server and client library have been removed from this release. Support
will be added back to a later release.

• Improved speed and performance by re-architecting certain sections of the code.

• The ViewColumns GetSchema collection has been updated.

• The CommandBuilder.DeriveParameters function has been updated to the procedure cache.

• Metadata from stored procedures and stored function execution are cached.

• The MySqlCommand object now supports asynchronous query methods. This is implemented useg
the BeginExecuteNonQuery and EndExecuteNonQuery methods.

http://dev.mysql.com/doc/refman/5.5/en/select.html

Changes in MySQL Connector/Net 5.0.2 (2006-11-06)

306

• PerfMon hooks have been added to monitor the stored procedure cache hits and misses.

• Usage Advisor has been implemented. The Usage Advisor checks your queries and will report if you
are using the connection inefficiently.

Bugs Fixed

• When using a DbNull.Value as the value for a parameter value, and then later setting a specific
value type, the command would fail with an exception because the wrong type was implied from the
DbNull.Value. (Bug #24565)

• Using Driver.IsTooOld() would return the wrong value. (Bug #24661)

• Nested transactions (which are unsupported)do not raise an error or warning. (Bug #22400)

• When adding parameter objects to a command object, if the parameter direction is set to
ReturnValue before the parameter is added to the command object then when the command is
executed it throws an error. (Bug #25013)

• Deleting a connection to a disconnected server when using the Visual Studio Plugin would cause an
assertion failure. (Bug #23687)

• Additional text added to error message (Bug #25178)

• An exception would be raised, or the process would hang, if SELECT privileges on a database were
not granted and a stored procedure was used. (Bug #25033)

• Stored procedure executions are not thread safe. (Bug #23905)

A.11.9. Changes in MySQL Connector/Net 5.0.2 (2006-11-06)

Functionality Added or Changed

• Important change: Due to a number of issues with the use of server-side prepared statements,
MySQL Connector/Net 5.0.2 has disabled their use by default. The disabling of server-side prepared
statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your
connector string properties:

ignore prepare=false

The default value of this property is true.

• Implemented a stored procedure cache. By default, the connector caches the metadata for the last
25 procedures that are seen. You can change the number of procedures that are cached by using
the procedure cache connection string.

• An Ignore Prepare option has been added to the connection string options. If enabled, prepared
statements will be disabled application-wide. The default for this option is true.

Bugs Fixed

• Within Mono, using the PreparedStatement interface could result in an error due to a BitArray
copying error. (Bug #18186)

• An exception would be thrown when calling GetSchemaTable and fields was null. (Bug #23538)

• During installation, an antivirus error message would be raised (indicating a malicious script
problem). (Bug #23245)

• MySQL Connector/Net did not work as a data source for the SqlDataSource object used by
ASP.NET 2.0. (Bug #16126)

http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_select

Changes in MySQL Connector/Net 5.0.1 (2006-10-01)

307

• One system where IPv6 was enabled, MySQL Connector/Net would incorrectly resolve host names.
(Bug #23758)

• A System.FormatException exception would be raised when invoking a stored procedure with an
ENUM input parameter. (Bug #23268)

• Using Windows Vista (RC2) as a nonprivileged user would raise a Registry key 'Global'
access denied. (Bug #22882)

• Column names with accented characters were not parsed properly causing malformed column
names in result sets. (Bug #23657)

• Creating a connection through the Server Explorer when using the Visual Studio Plugin would fail.
The installer for the Visual Studio Plugin has been updated to ensure that MySQL Connector/Net
5.0.2 must be installed. (Bug #23071)

A.11.10. Changes in MySQL Connector/Net 5.0.1 (2006-10-01)

Bugs Fixed

• Submitting an empty string to a command object through prepare raises an
System.IndexOutOfRangeException, rather than a MySQL Connector/Net exception. (Bug
#18391)

• Executing multiple queries as part of a transaction returns There is already an
openDataReader associated with this Connection which must be closed first.
(Bug #7248)

• Using ExecuteScalar with a datetime field, where the value of the field is "0000-00-00 00:00:00", a
MySqlConversionException exception would be raised. (Bug #11991)

• The MySqlexception class is now derived from the DbException class. (Bug #21874)

• Incorrect field/data lengths could be returned for VARCHAR UTF8 columns. (Bug #14592)

• You can now install the MySQL Connector/Net MSI package from the command line using the /
passive, /quiet, /q options. (Bug #19994)

• An MySql.Data.Types.MySqlConversionException would be raised when trying to update a
row that contained a date field, where the date field contained a zero value (0000-00-00 00:00:00).
(Bug #9619)

• Starting a transaction on a connection created by
MySql.Data.MySqlClient.MySqlClientFactory, using BeginTransaction without
specifying an isolation level, causes the SQL statement to fail with a syntax error. (Bug #22042)

• The # would not be accepted within column/table names, even though it was valid. (Bug #21521)

• MySQL Connector/Net on a Turkish operating system, may fail to execute certain SQL statements
correctly. (Bug #22452)

A.11.11. Changes in MySQL Connector/Net 5.0.0 (2006-08-08)

Functionality Added or Changed

• Implemented MySqlConnectionBuilder class.

• Completely refactored how column values are handled to avoid boxing in some cases.

• Implemented Usage Advisor.

• Added Async query methods.

http://dev.mysql.com/doc/refman/5.5/en/enum.html
http://dev.mysql.com/doc/refman/5.5/en/char.html

Changes in MySQL Connector/Net Version 1.0

308

• Implemented classes and interfaces for ADO.Net 2.0 support.

• Added perfmon hooks for stored procedure cache hits and misses.

• Implemented MySqlClientFactory class.

• Added internal implemention of SHA1 so we don't have to distribute the OpenNetCF on mobile
devices.

• Added procedure metadata caching.

• Reworked connection string classes to be simpler and faster.

• Reimplemented PacketReader/PacketWriter support into MySqlStream class.

• Added usage advisor warnings for requesting column values by the wrong type.

• Refactored test suite to test all protocols in a single pass.

• Replaced use of ICSharpCode with .NET 2.0 internal deflate support.

Bugs Fixed

• CommandText: Question mark in comment line is being parsed as a parameter. (Bug #6214)

A.12. Changes in MySQL Connector/Net Version 1.0

A.12.1. Changes in MySQL Connector/Net 1.0.11 (Not released)

Version 1.0.11 has no changelog entries.

A.12.2. Changes in MySQL Connector/Net 1.0.10 (2007-08-24)

Bugs Fixed

• BINARY and VARBINARY columns would be returned as a string, not binary, data type. (Bug #25605)

• An incorrect ConstraintException could be raised on an INSERT when adding rows to a table
with a multiple-column unique key index. (Bug #30204)

• MySqlParameterCollection and parameters added with Insert method can not be retrieved
later using ParameterName. (Bug #27135)

• The availability of a MySQL server would not be reset when using pooled connections
(pooling=true). This would lead to the server being reported as unavailable, even if the server
become available while the application was still running. (Bug #29409)

• High CPU utilization would be experienced when there is no idle connection waiting when using
pooled connections through MySqlPool.GetConnection. (Bug #24373)

• Publisher listed in "Add/Remove Programs" is not consistent with other MySQL products. (Bug
#27253)

• When a MySqlConversionException is raised on a remote object, the client application would
receive a SerializationException instead. (Bug #24957)

• A critical ConnectionPool error would result in repeated System.NullReferenceException.
(Bug #25603)

A.12.3. Changes in MySQL Connector/Net 1.0.9 (2007-02-02)

Functionality Added or Changed

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html

Changes in MySQL Connector/Net 1.0.9 (2007-02-02)

309

• Important change: Due to a number of issues with the use of server-side prepared statements,
MySQL Connector/Net 5.0.2 has disabled their use by default. The disabling of server-side prepared
statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your
connector string properties:

ignore prepare=false

The default value of this property is true.

• Implemented a stored procedure cache. By default, the connector caches the metadata for the last
25 procedures that are seen. You can change the number of procedures that are cached by using
the procedure cache connection string.

• An Ignore Prepare option has been added to the connection string options. If enabled, prepared
statements will be disabled application-wide. The default for this option is true.

• Improved CommandBuilder.DeriveParameters to first try and use the procedure cache before
querying for the stored procedure metadata. Return parameters created with DeriveParameters
now have the name RETURN_VALUE.

• Important change: Binaries for .NET 1.0 are no longer supplied with this release. If you need
support for .NET 1.0, you must build from source.

• The ICSharpCode ZipLib is no longer used by the Connector, and is no longer distributed with it.

Bugs Fixed

• When using a DbNull.Value as the value for a parameter value, and then later setting a specific
value type, the command would fail with an exception because the wrong type was implied from the
DbNull.Value. (Bug #24565)

• Within Mono, using the PreparedStatement interface could result in an error due to a BitArray
copying error. (Bug #18186)

• An System.OverflowException would be raised when accessing a varchar field over 255 bytes.
(Bug #23749)

• Using Driver.IsTooOld() would return the wrong value. (Bug #24661)

• Nested transactions do not raise an error or warning. (Bug #22400)

• Additional text added to error message. (Bug #25178)

• When adding parameter objects to a command object, if the parameter direction is set to
ReturnValue before the parameter is added to the command object then when the command is
executed it throws an error. (Bug #25013)

• MySqlConnection throws a NullReferenceException and ArgumentNullException when
connecting to MySQL v4.1.7. (Bug #25726)

• When closing and then re-opening a connection to a database, the character set specification is lost.
(Bug #25614)

• Trying to fill a table schema through a stored procedure triggers a runtime error. (Bug #25609)

• One system where IPv6 was enabled, MySQL Connector/Net would incorrectly resolve host names.
(Bug #23758)

• Times with negative values would be returned incorrectly. (Bug #25912)

• The CommandBuilder would mistakenly add insert parameters for a table column with auto
incrementation enabled. (Bug #23862)

Changes in MySQL Connector/Net 1.0.8 (2006-10-20)

310

• Using ExecuteScalar() with more than one query, where one query fails, will hang the
connection. (Bug #25443)

• When connecting to a server, the return code from the connection could be zero, even though the
host name was incorrect. (Bug #24802)

• Stored procedure executions are not thread safe. (Bug #23905)

• SELECT did not work correctly when using a WHERE clause containing a UTF-8 string. (Bug #25651)

A.12.4. Changes in MySQL Connector/Net 1.0.8 (2006-10-20)

Functionality Added or Changed

• The method for retrieving stored procedure metadata has been changed so that users without
SELECT privileges on the mysql.proc table can use a stored procedure.

• Stored procedures are now cached.

Bugs Fixed

• When working with multiple threads, character set initialization would generate errors. (Bug #17106)

• When using MySqlDataAdapter, connections to a MySQL server may remain open and active,
even though the use of the connection has been completed and the data received. (Bug #8131)

• Submitting an empty string to a command object through prepare raises an
System.IndexOutOfRangeException, rather than a MySQL Connector/Net exception. (Bug
#18391)

• Called MySqlCommandBuilder.DeriveParameters for a stored procedure that has no paramers
would cause an application crash. (Bug #15077)

• The connection string parser did not permit single or double quotation marks in the password. (Bug
#16659)

• The CommandBuilder ignored Unsigned flag at Parameter creation. (Bug #17375)

• Executing multiple queries as part of a transaction returns There is already an
openDataReader associated with this Connection which must be closed first.
(Bug #7248)

• CHAR type added to MySqlDbType. (Bug #17749)

• Using ExecuteScalar with a datetime field, where the value of the field is "0000-00-00 00:00:00", a
MySqlConversionException exception would be raised. (Bug #11991)

• Parameter substitution in queries where the order of parameters and table fields did not match would
substitute incorrect values. (Bug #19261)

• The MySqlDateTime class did not contain constructors. (Bug #15112)

• When running a query that included a date comparison, a DateReader error would be raised. (Bug
#19481)

• When using an unsigned 64-bit integer in a stored procedure, the unsigned bit would be lost stored.
(Bug #16934)

• Incorrect field/data lengths could be returned for VARCHAR UTF8 columns. (Bug #14592)

• A SELECT query on a table with a date with a value of '0000-00-00' would hang the application.
(Bug #17736)

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_select
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/select.html

Changes in MySQL Connector/Net 1.0.7 (2005-11-21)

311

• You can now install the MySQL Connector/Net MSI package from the command line using the /
passive, /quiet, /q options. (Bug #19994)

• An MySql.Data.Types.MySqlConversionException would be raised when trying to update a
row that contained a date field, where the date field contained a zero value (0000-00-00 00:00:00).
(Bug #9619)

• The DiscoverParameters function would fail when a stored procedure used a NUMERIC parameter
type. (Bug #19515)

• Unsigned data types were not properly supported. (Bug #16788)

• The # would not be accepted within column/table names, even though it was valid. (Bug #21521)

• DataReader would show the value of the previous row (or last row with nonnull data) if the current
row contained a datetime field with a null value. (Bug #16884)

• IDataRecord.GetString would raise NullPointerException for null values in returned rows.
Method now throws SqlNullValueException. (Bug #19294)

• MySQL Connector/Net on a Turkish operating system, may fail to execute certain SQL statements
correctly. (Bug #22452)

• Calling Close on a connection after calling a stored procedure would trigger a
NullReferenceException. (Bug #20581)

• An exception would be raised when using an output parameter to a System.String value. (Bug
#17814)

A.12.5. Changes in MySQL Connector/Net 1.0.7 (2005-11-21)

Bugs Fixed

• Calling a stored procedure where a parameter contained special characters (such as '@') would
produce an exception. Note that ANSI_QUOTES had to be enabled to make this possible. (Bug
#13753)

• A #42000Query was empty exception occurred when executing a query built with
MySqlCommandBuilder, if the query string ended with a semicolon. (Bug #14631)

• The parameter collection object's Add() method added parameters to the list without first checking
to see whether they already existed. Now it updates the value of the existing parameter object if it
exists. (Bug #13927)

• Added support for the cp932 character set. (Bug #13806)

• The Ping() method did not update the State property of the Connection object. (Bug #13658)

• Implemented the MySqlCommandBuilder.DeriveParameters method that is used to discover
the parameters for a stored procedure. (Bug #13632)

• A statement that contained multiple references to the same parameter could not be prepared. (Bug
#13541)

• Unsigned tinyint (NET byte) would lead to and incorrectly determined parameter type from the
parameter value. (Bug #18570)

A.12.6. Changes in MySQL Connector/Net 1.0.6 (2005-10-03)

Bugs Fixed

• Field names that contained the following characters caused errors: ()%<>/ (Bug #13036)

http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html#sqlmode_ansi_quotes

Changes in MySQL Connector/Net 1.0.5 (2005-08-29)

312

• MySQL Connector/Net 1.0.5 could not connect on Mono. (Bug #13345)

• The MySQL Connector/Net 1.0.5 installer would not install alongside MySQL Connector/Net 1.0.4.
(Bug #12835)

• Serializing a parameter failed if the first value passed in was NULL. (Bug #13276)

• The nant build sequence had problems. (Bug #12978)

A.12.7. Changes in MySQL Connector/Net 1.0.5 (2005-08-29)

Bugs Fixed

• A call to a stored procedure caused an exception if the stored procedure had no parameters. (Bug
#11542)

• Added support to call a stored function from MySQL Connector/Net. (Bug #10644)

• MySQL Connector/Net interpreted the new decimal data type as a byte array. (Bug #11294)

• Trying to use a stored procedure when Connection.Database was not populated generated an
exception. (Bug #11450)

• The ConnectionString property could not be set when a MySqlConnection object was added
with the designer. (Bug #12551, Bug #8724)

• With multiple hosts in the connection string, MySQL Connector/Net would not connect to the last host
in the list. (Bug #12628)

• Connection could fail when .NET thread pool had no available worker threads. (Bug #10637)

• MySQL Connector/Net could not work properly with certain regional settings. (WL#8228)

• Certain malformed queries would trigger a Connection must be valid and open error
message. (Bug #11490)

• MySQL Connector/Net could not connect to MySQL 4.1.14. (Bug #12771)

• Trying to read a TIMESTAMP column generated an exception. (Bug #7951)

• Decimal parameters caused syntax errors. (Bug #10152, Bug #11550, Bug #10486)

• Parameters were not recognized when they were separated by linefeeds. (Bug #9722)

• The cp1250 character set was not supported. (Bug #11621)

• Calling MySqlConnection.clone when a connection string had not yet been set on the original
connection would generate an error. (Bug #10281)

• The MySqlCommandBuilder class could not handle queries that referenced tables in a database
other than the default database. (Bug #8382)

A.12.8. Changes in MySQL Connector/Net 1.0.4 (2005-01-20)

Bugs Fixed

• MySqlCommand.Connection returns an IDbConnection. (Bug #7258)

• Fixed problem that causes named pipes to not work with some blob functionality.

• Fixed another small problem with prepared statements.

• Quote character \222 not quoted in EscapeString. (Bug #7724)

http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/Net 1.0.3 (2004-10-12, gamma)

313

• Clone method bug in MySqlCommand. (Bug #7478)

• Added or filled out several more topics in the API reference documentation.

• Fixed problem with shared memory connections.

• Calling prepare causing exception. (Bug #7243)

• MySqlDataReader.GetString(index) returns non-Null value when field is Null. (Bug #7612)

• MySqlAdapter.Fill method throws error message Non-negative number required. (Bug
#7345)

• Problem with Multiple resultsets. (Bug #7436)

• MySqlReader.GetInt32 throws exception if column is unsigned. (Bug #7755)

• GetBytes was not working. (Bug #7704)

A.12.9. Changes in MySQL Connector/Net 1.0.3 (2004-10-12, gamma)

Bugs Fixed

• Made MySQL the default named pipe name.

• Now SHOW COLLATION is used upon connection to retrieve the full list of charset ids.

• Inserting DateTime causes System.InvalidCastException to be thrown. (Bug #7132)

• Integer "out" parameter from stored procedure returned as string. (Bug #6668)

• Int64 Support in MySqlCommand Parameters. (Bug #6863)

• Changed the name of the test suite to MySql.Data.Tests.dll.

• Added Ping method to MySqlConnection.

• Invalid query string when using inout parameters (Bug #7133)

• Errors in parsing stored procedure parameters. (Bug #6902)

• Added ServerThread property to MySqlConnection to expose server thread id.

• InvalidCast when using DATE_ADD-function. (Bug #6879)

• Fixed problem where multiple resultsets having different numbers of columns would cause a
problem.

• MySqlDateTime in Datatables sorting by Text, not Date. (Bug #7032)

• MySqlDataReader.GetChar(int i) throws IndexOutOfRange exception. (Bug #6770)

• An Open Connection has been Closed by the Host System. (Bug #6634)

• Fixed Invalid character set index: 200. (Bug #6547)

• Exception stack trace lost when re-throwing exceptions. (Bug #6983)

• Fixed major problem with detecting null values when using prepared statements.

• Installer now includes options to install into GAC and create Start Menu items.

• Connections now do not have to give a database on the connection string.

http://dev.mysql.com/doc/refman/5.5/en/show-collation.html

Changes in MySQL Connector/Net 1.0.2 (2004-11-15, gamma)

314

• Test suite fails with MySQL 4.0 because of case sensitivity of table names. (Bug #6831)

A.12.10. Changes in MySQL Connector/Net 1.0.2 (2004-11-15, gamma)

Bugs Fixed

• Fixed problem where calling stored procedures might cause an "Illegal mix of collations" problem.

• Fixed Objects not being disposed (Bug #6649)

• Fixed double type handling in MySqlParameter(string parameterName, object value). (Bug #6428)

• Fixed #HY000 Illegal mix of collations (latin1_swedish_ci,IMPLICIT) and (utf8_general_ (Bug #6322)

• Fixed Installation directory ignored using custom installation (Bug #6329)

• Fixed Long inserts take very long time (Bu #5453)

• Fixed Charset-map for UCS-2 (Bug #6541)

• Fixed Zero date "0000-00-00" is returned wrong when filling Dataset (Bug #6429)

• Fixed problem where setting command text leaves the command in a prepared state

• Updated the installer to include the new samples

• Provider is now using character set specified by server as default

• Fixed problem with MySqlBinary where string values could not be used to update extended text
columns

• Added charset connection string option

• Added the TableEditor CS and VB sample

A.12.11. Changes in MySQL Connector/Net 1.0.1 (2004-10-27, Beta)

Bugs Fixed

• Virtualized driver subsystem so future releases could easily support client or embedded server
support

• Setting DbType threw a NullReferenceException. (Bug #5469)

• Fixed constructor initialize problems in MySqlCommand() (Bug #5613)

• Fixed System.OverflowException when using YEAR data type. (Bug #6036)

• Fixed Yet Another "object reference not set to an instance of an object" (Bug #5496)

• CP1252 is now used for Latin1 only when the server is 4.1.2 and later

• Refactored compression code into CompressedStream to clean up NativeDriver

• Fixed Parsing the ';' char (Bug #5876)

• Fixed problem where Min Pool Size was not being respected

• Fixed problem where connector was not issuing a CMD_QUIT before closing the socket

• Fixed MySqlDataReader and 'show tables from ...' behavior (Bug #5256)

• Fixed problem where MySqlParameterCollection.Add() would throw unclear exception when given a
null value (Bug #5621)

Changes in MySQL Connector/Net 1.0.0 (2004-09-01)

315

• Cannot run a stored procedure populating mysqlcommand.parameters (Bug #5474)

• Fixed Russian character support as well

• Fixed problem with ConnectionInternal where a key might be added more than once

• Implemented SequentialAccess

• Fixed IndexOutOfBounds when reading BLOB with DataReader with GetString(index). (Bug
#6230)

• Fixed MySqlDateTime sets IsZero property on all subseq.records after first zero found (Bug #6006)

• Using PacketWriter instead of Packet for writing to streams

• Added Aggregate function test (wasn't really a bug)

• MySqlCommand saw instances of "?" as parameters in string literals. (Bug #5392)

• Field buffers being reused to decrease memory allocations and increase speed

• Possible bug in MySqlParameter(string, object) constructor (Bug #5602)

• Fixed NET Connector source missing resx files (Bug #6216)

• Fixed serializing of floating point parameters (double, numeric, single, decimal) (Bug #5900)

• Fixed Method TokenizeSql() uses only a limited set of valid characters for parameters (Bug #6217)

• Fixed problem where connection lifetime on the connect string was not being respected

• DataReader reported all rows as NULL if one row was NULL. (Bug #5388)

• Fixed Can't display Chinese correctly (Bug #5288)

• Fixed missing Reference in DbType setter (Bug #5897)

• Added test case for resetting the command text on a prepared command

• Fixed GetBoolean returns wrong values (Bug #6227)

• IsNullable error (Bug #5796)

• Fixed DBNull Values causing problems with retrieving/updating queries. (Bug #5798)

• Calling GetChars on a LONGTEXT column threw an exception. (Bug #5458)

• Fixed problem where using old syntax while using the interfaces caused problems

• Fixed problem in PacketReader where it could try to allocate the wrong buffer size in EnsureCapacity

A.12.12. Changes in MySQL Connector/Net 1.0.0 (2004-09-01)

Bugs Fixed

• Removed some last references to ByteFX.

• Fixed problem with using compression.

• Updated many of the test cases.

• Thai encoding not correctly supported. (Bug #3889)

• Added COPYING.rtf file for use in installer.

Changes in MySQL Connector/Net Version 0.9.0 (30 August 2004)

316

• Removed all of the XML comment warnings.

• Bumped version number to 1.0.0 for beta 1 release.

A.13. Changes in MySQL Connector/Net Version 0.9.0 (30 August
2004)

• Added test fixture for prepared statements.

• All type classes now implement a SerializeBinary method for sending their data to a
PacketWriter.

• Added PacketWriter class that will enable future low-memory large object handling.

• Fixed many small bugs in running prepared statements and stored procedures.

• Changed command so that an exception will not be thrown in executing a stored procedure with
parameters in old syntax mode.

• SingleRow behavior now working right even with limit.

• GetBytes now only works on binary columns.

• Logger now truncates long SQL commands so blob columns do not blow out our log.

• Host and database now have a default value of "" unless otherwise set.

• Connection Timeout seems to be ignored. (Bug #5214)

• Added test case for bug# 5051: GetSchema not working correctly.

• Fixed problem where GetSchema would return false for IsUnique when the column is key.

• MySqlDataReader GetXXX methods now using the field level MySqlValue object and not
performing conversions.

• DataReader returning NULL for time column. (Bug #5097)

• Added test case for LOAD DATA LOCAL INFILE.

• Added replacetext custom nant task.

• Added CommandBuilderTest fixture.

• Added Last One Wins feature to CommandBuilder.

• Fixed persist security info case problem.

• Fixed GetBool so that 1, true, "true", and "yes" all count as true.

• Make parameter mark configurable.

• Added the "old syntax" connection string parameter to enable use of @ parameter marker.

• MySqlCommandBuilder. (Bug #4658)

• ByteFX.MySqlClient caches passwords if Persist Security Info is false. (Bug #4864)

• Updated license banner in all source files to include FLOSS exception.

• Added new .Types namespace and implementations for most current MySql types.

• Added MySqlField41 as a subclass of MySqlField.

http://dev.mysql.com/doc/refman/5.5/en/load-data.html

Changes in MySQL Connector/Net Version 0.9.0 (30 August 2004)

317

• Changed many classes to now use the new .Types types.

• Changed type enum int to Int32, short to Int16, and bigint to Int64.

• Added dummy types UInt16, UInt32, and UInt64 to allow an unsigned parameter to be made.

• Connections are now reset when they are pulled from the connection pool.

• Refactored auth code in driver so it can be used for both auth and reset.

• Added UserReset test in PoolingTests.cs.

• Connections are now reset using COM_CHANGE_USER when pulled from the pool.

• Implemented SingleResultSet behavior.

• Implemented support of unicode.

• Added char set mappings for utf-8 and ucs-2.

• Time fields overflow using bytefx .net mysql driver (Bug #4520)

• Modified time test in data type test fixture to check for time spans where hours > 24.

• Wrong string with backslash escaping in ByteFx.Data.MySqlClient.MySqlParameter. (Bug
#4505)

• Added code to Parameter test case TestQuoting to test for backslashes.

• MySqlCommandBuilder fails with multi-word column names. (Bug #4486)

• Fixed bug in TokenizeSql where underscore would terminate character capture in parameter
name.

• Added test case for spaces in column names.

• MySqlDataReader.GetBytes do not work correctly. (Bug #4324)

• Added GetBytes() test case to DataReader test fixture.

• Now reading all server variables in InternalConnection.Configure into Hashtable.

• Now using string[] for index map in CharSetMap.

• Added CRInSQL test case for carriage returns in SQL.

• Setting maxPacketSize to default value in Driver.ctor.

• Setting MySqlDbType on a parameter doesn't set generic type. (Bug #4442)

• Removed obsolete data types Long and LongLong.

• Overflow exception thrown when using "use pipe" on connection string. (Bug #4071)

• Changed "use pipe" keyword to "pipe name" or just "pipe".

• Enable reading multiple resultsets from a single query.

• Added flags attribute to ServerStatusFlags enum.

• Changed name of ServerStatus enum to ServerStatusFlags.

• Inserted data row doesn't update properly.

• Error processing show create table. (Bug #4074)

Changes in MySQL Connector/Net Version 0.9.0 (30 August 2004)

318

• Change Packet.ReadLenInteger to ReadPackedLong and added
packet.ReadPackedInteger that always reads integers packed with 2,3,4.

• Added syntax.cs test fixture to test various SQL syntax bugs.

• Improper handling of time values. Now time value of 00:00:00 is not treated as null. (Bug #4149)

• Moved all test suite files into TestSuite folder.

• Fixed bug where null column would move the result packet pointer backward.

• Added new nant build script.

• Clear tablename so it will be regen'ed properly during the next GenerateSchema. (Bug #3917)

• GetValues was always returning zero and was also always trying to copy all fields rather than
respecting the size of the array passed in. (Bug #3915)

• Implemented shared memory access protocol.

• Implemented prepared statements for MySQL 4.1.

• Implemented stored procedures for MySQL 5.0.

• Renamed MySqlInternalConnection to InternalConnection.

• SQL is now parsed as chars, fixes problems with other languages.

• Added logging and allow batch connection string options.

• RowUpdating event not set when setting the DataAdapter property. (Bug #3888)

• Fixed bug in char set mapping.

• Implemented 4.1 authentication.

• Improved open/auth code in driver.

• Improved how connection bits are set during connection.

• Database name is now passed to server during initial handshake.

• Changed namespace for client to MySql.Data.MySqlClient.

• Changed assembly name of client to MySql.Data.dll.

• Changed license text in all source files to GPL.

• Added the MySqlClient.build Nant file.

• Removed the mono batch files.

• Moved some of the unused files into notused folder so nant build file can use wildcards.

• Implemented shared memory access.

• Major revamp in code structure.

• Prepared statements now working for MySql 4.1.1 and later.

• Finished implementing auth for 4.0, 4.1.0, and 4.1.1.

• Changed namespace from MySQL.Data.MySQLClient back to MySql.Data.MySqlClient.

• Fixed bug in CharSetMapping where it was trying to use text names as ints.

Changes in MySQL Connector/Net Version 0.76

319

• Changed namespace to MySQL.Data.MySQLClient.

• Integrated auth changes from UC2004.

• Fixed bug where calling any of the GetXXX methods on a datareader before or after reading data
would not throw the appropriate exception (thanks Luca Morelli).

• Added TimeSpan code in parameter.cs to properly serialize a timespan object to mysql time format
(thanks Gianluca Colombo).

• Added TimeStamp to parameter serialization code. Prevented DataAdapter updates from working
right (thanks Michael King).

• Fixed a misspelling in MySqlHelper.cs (thanks Patrick Kristiansen).

A.14. Changes in MySQL Connector/Net Version 0.76
• Driver now using charset number given in handshake to create encoding.

• Changed command editor to point to MySqlClient.Design.

• Fixed bug in Version.isAtLeast.

• Changed DBConnectionString to support changes done to MySqlConnectionString.

• Removed SqlCommandEditor and DataAdapterPreviewDialog.

• Using new long return values in many places.

• Integrated new CompressedStream class.

• Changed ConnectionString and added attributes to permit it to be used in
MySqlClient.Design.

• Changed packet.cs to support newer lengths in ReadLenInteger.

• Changed other classes to use new properties and fields of MySqlConnectionString.

• ConnectionInternal is now using PING to see whether the server is available.

• Moved toolbox bitmaps into resource folder.

• Changed field.cs to permit values to come directly from row buffer.

• Changed to use the new driver.Send syntax.

• Using a new packet queueing system.

• Started work handling the "broken" compression packet handling.

• Fixed bug in StreamCreator where failure to connect to a host would continue to loop infinitely
(thanks Kevin Casella).

• Improved connectstring handling.

• Moved designers into Pro product.

• Removed some old commented out code from command.cs.

• Fixed a problem with compression.

• Fixed connection object where an exception throw prior to the connection opening would not leave
the connection in the connecting state (thanks Chris Cline).

Changes in MySQL Connector/Net Version 0.75

320

• Added GUID support.

• Fixed sequence out of order bug (thanks Mark Reay).

A.15. Changes in MySQL Connector/Net Version 0.75

• Enum values now supported as parameter values (thanks Philipp Sumi).

• Year data type now supported.

• Fixed compression.

• Fixed bug where a parameter with a TimeSpan as the value would not serialize properly.

• Fixed bug where default constructor would not set default connection string values.

• Added some XML comments to some members.

• Work to fix/improve compression handling.

• Improved ConnectionString handling so that it better matches the standard set by SqlClient.

• A MySqlException is now thrown if a user name is not included in the connection string.

• Localhost is now used as the default if not specified on the connection string.

• An exception is now thrown if an attempt is made to set the connection string while the connection is
open.

• Small changes to ConnectionString docs.

• Removed MultiHostStream and MySqlStream. Replaced it with Common/StreamCreator.

• Added support for Use Pipe connection string value.

• Added Platform class for easier access to platform utility functions.

• Fixed small pooling bug where new connection was not getting created after IsAlive fails.

• Added Platform.cs and StreamCreator.cs.

• Fixed Field.cs to properly handle 4.1 style timestamps.

• Changed Common.Version to Common.DBVersion to avoid name conflict.

• Fixed field.cs so that text columns return the right field type.

• Added MySqlError class to provide some reference for error codes (thanks Geert Veenstra).

A.16. Changes in MySQL Connector/Net Version 0.74

• Added Unix socket support (thanks Mohammad DAMT).

• Only calling Thread.Sleep when no data is available.

• Improved escaping of quote characters in parameter data.

• Removed misleading comments from parameter.cs.

• Fixed pooling bug.

• Fixed ConnectionString editor dialog (thanks marco p (pomarc)).

Changes in MySQL Connector/Net Version 0.74

321

• UserId now supported in connection strings (thanks Jeff Neeley).

• Attempting to create a parameter that is not input throws an exception (thanks Ryan Gregg).

• Added much documentation.

• Checked in new MultiHostStream capability. Big thanks to Dan Guisinger for this. he originally
submitted the code and idea of supporting multiple machines on the connect string.

• Added a lot of documentation.

• Fixed speed issue with 0.73.

• Changed to Thread.Sleep(0) in MySqlDataStream to help optimize the case where it doesn't need to
wait (thanks Todd German).

• Prepopulating the idlepools to MinPoolSize.

• Fixed MySqlPool deadlock condition as well as stupid bug where CreateNewPooledConnection
was not ever adding new connections to the pool. Also fixed MySqlStream.ReadBytes and
ReadByte to not use TicksPerSecond which does not appear to always be right. (thanks Matthew
J. Peddlesden)

• Fix for precision and scale (thanks Matthew J. Peddlesden).

• Added Thread.Sleep(1) to stream reading methods to be more cpu friendly (thanks Sean
McGinnis).

• Fixed problem where ExecuteReader would sometime return null (thanks Lloyd Dupont).

• Fixed major bug with null field handling (thanks Naucki).

• Enclosed queries for max_allowed_packet and characterset inside try catch (and set
defaults).

• Fixed problem where socket was not getting closed properly (thanks Steve!).

• Fixed problem where ExecuteNonQuery was not always returning the right value.

• Fixed InternalConnection to not use @@session.max_allowed_packet but use
@@max_allowed_packet. (Thanks Miguel)

• Added many new XML doc lines.

• Fixed SQL parsing to not send empty queries (thanks Rory).

• Fixed problem where the reader was not unpeeking the packet on close.

• Fixed problem where user variables were not being handled (thanks Sami Vaaraniemi).

• Fixed loop checking in the MySqlPool (thanks Steve M. Brown)

• Fixed ParameterCollection.Add method to match SqlClient (thanks Joshua Mouch).

• Fixed ConnectionString parsing to handle no and yes for boolean and not lowercase values
(thanks Naucki).

• Added InternalConnection class, changes to pooling.

• Implemented Persist Security Info.

• Added security.cs and version.cs to project

• Fixed DateTime handling in Parameter.cs (thanks Burkhard Perkens-Golomb).

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet

Changes in MySQL Connector/Net Version 0.71

322

• Fixed parameter serialization where some types would throw a cast exception.

• Fixed DataReader to convert all returned values to prevent casting errors (thanks Keith Murray).

• Added code to Command.ExecuteReader to return null if the initial SQL statement throws an
exception (thanks Burkhard Perkens-Golomb).

• Fixed ExecuteScalar bug introduced with restructure.

• Restructure to permit LOCAL DATA INFILE and better sequencing of packets.

• Fixed several bugs related to restructure.

• Early work done to support more secure passwords in MySQL 4.1. Old passwords in 4.1 not
supported yet.

• Parameters appearing after system parameters are now handled correctly (Adam M. (adammil)).

• Strings can now be assigned directly to blob fields (Adam M.).

• Fixed float parameters (thanks Pent).

• Improved Parameter constructor and ParameterCollection.Add methods to better match
SqlClient (thanks Joshua Mouch).

• Corrected Connection.CreateCommand to return a MySqlCommand type.

• Fixed connection string designer dialog box problem (thanks Abraham Guyt).

• Fixed problem with sending commands not always reading the response packet (thanks Joshua
Mouch).

• Fixed parameter serialization where some blobs types were not being handled (thanks Sean
McGinnis).

• Removed spurious MessageBox.show from DataReader code (thanks Joshua Mouch).

• Fixed a nasty bug in the split SQL code (thanks everyone!).

A.17. Changes in MySQL Connector/Net Version 0.71
• Fixed bug in MySqlStream where too much data could attempt to be read (thanks Peter Belbin)

• Implemented HasRows (thanks Nash Pherson).

• Fixed bug where tables with more than 252 columns cause an exception (thanks Joshua Kessler).

• Fixed bug where SQL statements ending in ; would cause a problem (thanks Shane Krueger).

• Fixed bug in driver where error messages were getting truncated by 1 character (thanks Shane
Krueger).

• Made MySqlException serializable (thanks Mathias Hasselmann).

A.18. Changes in MySQL Connector/Net Version 0.70
• Updated some of the character code pages to be more accurate.

• Fixed problem where readers could be opened on connections that had readers open.

• Moved test to separate assembly MySqlClientTests.

• Fixed stupid problem in driver with sequence out of order (Thanks Peter Belbin).

Changes in MySQL Connector/Net Version 0.70

323

• Added some pipe tests.

• Increased default max pool size to 50.

• Compiles with Mono 0-24.

• Fixed connection and data reader dispose problems.

• Added String data type handling to parameter serialization.

• Fixed sequence problem in driver that occurred after thrown exception (thanks Burkhard Perkens-
Golomb).

• Added support for CommandBehavior.SingleRow to DataReader.

• Fixed command SQL processing so quotation marks are better handled (thanks Theo Spears).

• Fixed parsing of double, single, and decimal values to account for non-English separators. You still
have to use the right syntax if you using hard coded SQL, but if you use parameters the code will
convert floating point types to use '.' appropriately internal both into the server and out.

• Added MySqlStream class to simplify timeouts and driver coding.

• Fixed DataReader so that it is closed properly when the associated connection is closed. [thanks
smishra]

• Made client more SqlClient compliant so that DataReaders have to be closed before the connection
can be used to run another command.

• Improved DBNull.Value handling in the fields.

• Added several unit tests.

• Fixed MySqlException base class.

• Improved driver coding

• Fixed bug where NextResult was returning false on the last resultset.

• Added more tests for MySQL.

• Improved casting problems by equating unsigned 32bit values to Int64 and unsigned 16bit values to
Int32, and so forth.

• Added new constructor for MySqlParameter for (name, type, size, srccol)

• Fixed bug in MySqlDataReader where it didn't check for null fieldlist before returning field count.

• Started adding MySqlClient unit tests (added MySqlClient/Tests folder and some test cases).

• Fixed some things in Connection String handling.

• Moved INIT_DB to MySqlPool. I may move it again, this is in preparation of the conference.

• Fixed bug inside CommandBuilder that prevented inserts from happening properly.

• Reworked some of the internals so that all three execute methods of Command worked properly.

• Fixed many small bugs found during benchmarking.

• The first cut of CoonectionPooling is working. "min pool size" and "max pool size" are respected.

• Work to enable multiple resultsets to be returned.

Changes in MySQL Connector/Net Version 0.68

324

• Character sets are handled much more intelligently now. The driver queries MySQL at startup for
the default character set. That character set is then used for conversions if that code page can be
loaded. If not, then the default code page for the current OS is used.

• Added code to save the inferred type in the name,value constructor of Parameter.

• Also, inferred type if value of null parameter is changed using Value property.

• Converted all files to use proper Camel case. MySQL is now MySql in all files. PgSQL is now PgSql.

• Added attribute to PgSql code to prevent designer from trying to show.

• Added MySQLDbType property to Parameter object and added proper conversion code to convert
from DbType to MySQLDbType).

• Removed unused ObjectToString method from MySQLParameter.cs.

• Fixed Add(..) method in ParameterCollection so that it doesn't use Add(name, value)
instead.

• Fixed IndexOf and Contains in ParameterCollection to be aware that parameter names are
now stored without @.

• Fixed Command.ConvertSQLToBytes so it only permits characters that can be in MySQL variable
names.

• Fixed DataReader and Field so that blob fields read their data from Field.cs and GetBytes
works right.

• Added simple query builder editor to CommandText property of MySQLCommand.

• Fixed CommandBuilder and Parameter serialization to account for Parameters not storing @ in
their names.

• Removed MySQLFieldType enum from Field.cs. Now using MySQLDbType enum.

• Added Designer attribute to several classes to prevent designer view when using VS.Net.

• Fixed Initial catalog typo in ConnectionString designer.

• Removed 3 parameter constructor for MySQLParameter that conflicted with (name, type, value).

• Changed MySQLParameter so paramName is now stored without leading @ (this fixed null inserts
when using designer).

• Changed TypeConverter for MySQLParameter to use the constructor with all properties.

A.19. Changes in MySQL Connector/Net Version 0.68

• Fixed sequence issue in driver.

• Added DbParametersEditor to make parameter editing more like SqlClient.

• Fixed Command class so that parameters can be edited using the designer

• Update connection string designer to support Use Compression flag.

• Fixed string encoding so that European characters will work correctly.

• Creating base classes to aid in building new data providers.

• Added support for UID key in connection string.

Changes in MySQL Connector/Net Version 0.65

325

• Field, parameter, command now using DBNull.Value instead of null.

• CommandBuilder using DBNull.Value.

• CommandBuilder now builds insert command correctly when an auto_insert field is not present.

• Field now uses typeof keyword to return System.Types (performance).

A.20. Changes in MySQL Connector/Net Version 0.65

• MySQLCommandBuilder now implemented.

• Transaction support now implemented (not all table types support this).

• GetSchemaTable fixed to not use xsd (for Mono).

• Driver is now Mono-compatible.

• TIME data type now supported.

• More work to improve Timestamp data type handling.

• Changed signatures of all classes to match corresponding SqlClient classes.

A.21. Changes in MySQL Connector/Net Version 0.60

• Protocol compression using SharpZipLib (www.icsharpcode.net).

• Named pipes on Windows now working properly.

• Work done to improve Timestamp data type handling.

• Implemented IEnumerable on DataReader so DataGrid would work.

A.22. Changes in MySQL Connector/Net Version 0.50

• Speed increased dramatically by removing bugging network sync code.

• Driver no longer buffers rows of data (more ADO.Net compliant).

• Conversion bugs related to TIMESTAMP and DATETIME fields fixed.

http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

326

327

Appendix B. Licenses for Third-Party Components

Table of Contents
B.1. ANTLR 3.3 License .. 327
B.2. RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License ... 327
B.3. zlib License .. 328
B.4. ZLIB.NET License .. 328

MySQL Connector/Net

• Section B.1, “ANTLR 3.3 License”

• Section B.2, “RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License”

• Section B.3, “zlib License”

• Section B.4, “ZLIB.NET License”

B.1. ANTLR 3.3 License
The following software may be included in this product:

ANTLR 3.3

ANTLR 3.3 License
Copyright (c) 2010 Terence Parr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
Neither the name of the author nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

B.2. RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License

The following software may be included in this product:

RFC 3174 - US Secure Hash Algorithm 1 (SHA1)

RFC 3174 - US Secure Hash Algorithm 1 (SHA1)

Copyright (C) The Internet Society (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it

zlib License

328

or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.

B.3. zlib License

The following software may be included in this product:

zlib

Oracle gratefully acknowledges the contributions of Jean-loup Gailly and Mark Adler in creating the zlib
general purpose compression library which is used in this product.

zlib.h -- interface of the 'zlib' general purpose compression library
Copyright (C) 1995-2004 Jean-loup Gailly and Mark Adler

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.3, July 18th, 2005
Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.5, April 19th, 2010
Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software. Permission is granted to anyone to use this software
for any purpose,including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would
 be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not
 be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu

B.4. ZLIB.NET License

The following software may be included in this product:

ZLIB.NET

ZLIB.NET License

329

Copyright (c) 2006-2007, ComponentAce
http://www.componentace.com
All rights reserved.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the
 above copyright notice, this list of conditions and
 the following disclaimer.
* Redistributions in binary form must reproduce the
 above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or
 other materials provided with the distribution.
* Neither the name of ComponentAce nor the names of its
 contributors may be used to endorse or promote products
 derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

330

	MySQL Connector/Net Developer's Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1. MySQL Connector/Net
	Chapter 2. Connector/Net Versions
	Chapter 3. Installing Connector/Net
	3.1. Installing Connector/Net on Windows
	3.1.1. Installing Connector/Net using the Installer
	3.1.2. Installing Connector/Net Using the Zip Packages

	3.2. Installing Connector/Net on Unix with Mono
	3.3. Installing Connector/Net from the Source Code

	Chapter 4. Connector/Net Visual Studio Integration
	4.1. Making a Connection
	4.2. Using IntelliSense in the SQL Editor
	4.3. Editing Tables
	4.3.1. Column Editor
	4.3.2. Editing Indexes
	4.3.3. Editing Foreign Keys
	4.3.4. Column Properties
	4.3.5. Table Properties

	4.4. Editing Views
	4.5. Editing Stored Procedures and Functions
	4.6. Editing Triggers
	4.7. Editing User Defined Functions (UDF)
	4.8. Debugging Stored Procedures and Functions
	4.9. Cloning Database Objects
	4.10. Dropping Database Objects
	4.11. Using the ADO.NET Entity Framework
	4.12. MySQL Website Configuration Tool
	4.13. MySQL SQL Editor
	4.14. DDL T4 Template Macro

	Chapter 5. Connector/Net Tutorials
	5.1. Tutorial: An Introduction to Connector/Net Programming
	5.1.1. The MySqlConnection Object
	5.1.2. The MySqlCommand Object
	5.1.3. Working with Decoupled Data
	5.1.4. Working with Parameters
	5.1.5. Working with Stored Procedures

	5.2. Tutorial: MySQL Connector/Net ASP.NET Membership and Role Provider
	5.3. Tutorial: MySQL Connector/Net ASP.NET Session State Provider
	5.4. Tutorial: MySQL Connector/Net ASP.NET Profile Provider
	5.5. Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source
	5.6. Tutorial: Databinding in ASP.NET using LINQ on Entities
	5.7. Tutorial: Using SSL with MySQL Connector/Net
	5.8. Tutorial: Using MySqlScript
	5.8.1. Using Delimiters with MySqlScript

	5.9. Tutorial: Generating MySQL DDL from an Entity Framework Model

	Chapter 6. Connector/Net Programming
	6.1. Connecting to MySQL Using Connector/Net
	6.2. Creating a Connector/Net Connection String
	6.2.1. Opening a Connection
	6.2.2. Handling Connection Errors
	6.2.3. Using GetSchema on a Connection
	6.2.3.1. Collections

	6.3. Using MySqlCommand
	6.4. Using Connector/Net with Connection Pooling
	6.5. Using the Windows Native Authentication Plugin
	6.6. Writing a Custom Authentication Plugin
	6.7. Using Connector/Net with Table Caching
	6.8. Using the Connector/Net with Prepared Statements
	6.8.1. Preparing Statements in Connector/Net

	6.9. Accessing Stored Procedures with Connector/Net
	6.9.1. Using Stored Routines from Connector/Net

	6.10. Handling BLOB Data With Connector/Net
	6.10.1. Preparing the MySQL Server
	6.10.2. Writing a File to the Database
	6.10.3. Reading a BLOB from the Database to a File on Disk

	6.11. Using the Connector/Net Interceptor Classes
	6.12. Handling Date and Time Information in Connector/Net
	6.12.1. Fractional Seconds
	6.12.2. Problems when Using Invalid Dates
	6.12.3. Restricting Invalid Dates
	6.12.4. Handling Invalid Dates
	6.12.5. Handling NULL Dates

	6.13. Using the MySqlBulkLoader Class
	6.14. Using the MySQL Connector/Net Trace Source Object
	6.14.1. Viewing MySQL Trace Information
	6.14.2. Building Custom Listeners

	6.15. Binary/Nonbinary Issues
	6.16. Character Set Considerations for Connector/Net
	6.17. Using Connector/Net with Crystal Reports
	6.17.1. Creating a Data Source
	6.17.2. Creating the Report
	6.17.3. Displaying the Report

	6.18. ASP.NET Provider Model
	6.19. Working with Partial Trust / Medium Trust
	6.19.1. Evolution of Partial Trust Support Across Connector/Net Versions
	6.19.2. Configuring Partial Trust with Connector/Net Library Installed in GAC
	6.19.3. Configuring Partial Trust with Connector/Net Library Not Installed in GAC

	Chapter 7. Connector/Net Connection String Options Reference
	Chapter 8. Connector/Net API Reference
	8.1. MySql.Data.MySqlClient Namespace
	8.1.1. MySql.Data.MySqlClientHierarchy
	8.1.2. BaseCommandInterceptor
	8.1.3. BaseExceptionInterceptor
	8.1.4. MySqlCommand Class
	8.1.4.1. MySqlCommand Members
	8.1.4.1.1. MySqlCommand Constructor
	8.1.4.1.1.1. MySqlCommand Constructor ()
	8.1.4.1.1.2. MySqlCommand Constructor (String)
	8.1.4.1.1.3. MySqlCommand Constructor
	8.1.4.1.1.3.1. MySqlConnection Class
	8.1.4.1.1.3.1.1. MySqlConnection Members
	8.1.4.1.1.3.1.1.1. MySqlConnection Constructor
	8.1.4.1.1.3.1.1.1.1. MySqlConnection Constructor
	8.1.4.1.1.3.1.1.1.2. MySqlConnection Constructor

	8.1.4.1.1.3.1.1.2. ConnectionString Property
	8.1.4.1.1.3.1.1.3. ConnectionTimeout Property
	8.1.4.1.1.3.1.1.4. Database Property
	8.1.4.1.1.3.1.1.5. DataSource Property
	8.1.4.1.1.3.1.1.6. ServerThread Property
	8.1.4.1.1.3.1.1.7. ServerVersion Property
	8.1.4.1.1.3.1.1.8. State Property
	8.1.4.1.1.3.1.1.9. UseCompression Property
	8.1.4.1.1.3.1.1.10. BeginTransaction Method
	8.1.4.1.1.3.1.1.10.1. MySqlConnection.BeginTransaction Method
	8.1.4.1.1.3.1.1.10.1.1. MySqlTransaction Class
	8.1.4.1.1.3.1.1.10.1.1.1. MySqlTransaction Members
	8.1.4.1.1.3.1.1.10.1.1.1.1. Connection Property
	8.1.4.1.1.3.1.1.10.1.1.1.2. IsolationLevel Property
	8.1.4.1.1.3.1.1.10.1.1.1.3. MySqlTransaction.Commit Method
	8.1.4.1.1.3.1.1.10.1.1.1.4. MySqlTransaction.Rollback Method

	8.1.4.1.1.3.1.1.10.2. MySqlConnection.BeginTransaction Method

	8.1.4.1.1.3.1.1.11. MySqlConnection.ChangeDatabase Method
	8.1.4.1.1.3.1.1.12. MySqlConnection.Close Method
	8.1.4.1.1.3.1.1.13. MySqlConnection.CreateCommand Method
	8.1.4.1.1.3.1.1.14. MySqlConnection.Open Method
	8.1.4.1.1.3.1.1.15. MySqlConnection.Ping Method
	8.1.4.1.1.3.1.1.16. MySqlConnection.InfoMessage Event
	8.1.4.1.1.3.1.1.16.1. MySqlInfoMessageEventHandler Delegate
	8.1.4.1.1.3.1.1.16.1.1. MySqlInfoMessageEventArgs Class
	8.1.4.1.1.3.1.1.16.1.1.1. MySqlInfoMessageEventArgs Members
	8.1.4.1.1.3.1.1.16.1.1.1.1. MySqlInfoMessageEventArgs Constructor
	8.1.4.1.1.3.1.1.16.1.1.1.2. MySqlInfoMessageEventArgs.errors Field
	8.1.4.1.1.3.1.1.16.1.1.1.2.1. MySqlError Class
	8.1.4.1.1.3.1.1.16.1.1.1.2.1.1. MySqlError Members
	8.1.4.1.1.3.1.1.16.1.1.1.2.1.1.1. MySqlError Constructor
	8.1.4.1.1.3.1.1.16.1.1.1.2.1.1.2. Code Property
	8.1.4.1.1.3.1.1.16.1.1.1.2.1.1.3. Level Property
	8.1.4.1.1.3.1.1.16.1.1.1.2.1.1.4. Message Property

	8.1.4.1.1.3.1.1.17. MySqlConnection.StateChange Event

	8.1.4.1.1.4. MySqlCommand Constructor

	8.1.4.1.2. CommandText Property
	8.1.4.1.3. CommandTimeout Property
	8.1.4.1.4. CommandType Property
	8.1.4.1.5. Connection Property
	8.1.4.1.6. IsPrepared Property
	8.1.4.1.7. Parameters Property
	8.1.4.1.7.1. MySqlParameterCollection Class
	8.1.4.1.7.1.1. MySqlParameterCollection Members
	8.1.4.1.7.1.1.1. MySqlParameterCollection Constructor
	8.1.4.1.7.1.1.2. Count Property
	8.1.4.1.7.1.1.3. Item Property
	8.1.4.1.7.1.1.3.1. MySqlParameter Class
	8.1.4.1.7.1.1.3.1.1. MySqlParameter Members
	8.1.4.1.7.1.1.3.1.1.1. MySqlParameter Constructor
	8.1.4.1.7.1.1.3.1.1.1.1. MySqlParameter Constructor ()
	8.1.4.1.7.1.1.3.1.1.1.2. MySqlParameter Constructor
	8.1.4.1.7.1.1.3.1.1.1.2.1. MySqlDbType Enumeration

	8.1.4.1.7.1.1.3.1.1.1.3. MySqlParameter Constructor (String, MySqlDbType, Int32)
	8.1.4.1.7.1.1.3.1.1.1.4. MySqlParameter Constructor
	8.1.4.1.7.1.1.3.1.1.1.4.1. Value Property

	8.1.4.1.7.1.1.3.1.1.1.5. MySqlParameter Constructor
	8.1.4.1.7.1.1.3.1.1.1.6. MySqlParameter Constructor

	8.1.4.1.7.1.1.3.1.1.2. DbType Property
	8.1.4.1.7.1.1.3.1.1.3. Direction Property
	8.1.4.1.7.1.1.3.1.1.4. IsNullable Property
	8.1.4.1.7.1.1.3.1.1.5. IsUnsigned Property
	8.1.4.1.7.1.1.3.1.1.6. MySqlDbType Property
	8.1.4.1.7.1.1.3.1.1.7. ParameterName Property
	8.1.4.1.7.1.1.3.1.1.8. Precision Property
	8.1.4.1.7.1.1.3.1.1.9. Scale Property
	8.1.4.1.7.1.1.3.1.1.10. Size Property
	8.1.4.1.7.1.1.3.1.1.11. SourceColumn Property
	8.1.4.1.7.1.1.3.1.1.12. SourceVersion Property
	8.1.4.1.7.1.1.3.1.1.13. MySqlParameter.ToString Method

	8.1.4.1.7.1.1.3.2. Item Property (Int32)
	8.1.4.1.7.1.1.3.3. Item Property (String)

	8.1.4.1.7.1.1.4. Add Method
	8.1.4.1.7.1.1.4.1. MySqlParameterCollection.Add Method
	8.1.4.1.7.1.1.4.2. MySqlParameterCollection.Add Method
	8.1.4.1.7.1.1.4.3. MySqlParameterCollection.Add Method
	8.1.4.1.7.1.1.4.4. MySqlParameterCollection.Add Method
	8.1.4.1.7.1.1.4.5. MySqlParameterCollection.Add Method
	8.1.4.1.7.1.1.4.6. MySqlParameterCollection.Add Method

	8.1.4.1.7.1.1.5. MySqlParameterCollection.Clear Method
	8.1.4.1.7.1.1.6. Contains Method
	8.1.4.1.7.1.1.6.1. MySqlParameterCollection.Contains Method
	8.1.4.1.7.1.1.6.2. MySqlParameterCollection.Contains Method

	8.1.4.1.7.1.1.7. MySqlParameterCollection.CopyTo Method
	8.1.4.1.7.1.1.8. IndexOf Method
	8.1.4.1.7.1.1.8.1. MySqlParameterCollection.IndexOf Method
	8.1.4.1.7.1.1.8.2. MySqlParameterCollection.IndexOf Method

	8.1.4.1.7.1.1.9. MySqlParameterCollection.Insert Method
	8.1.4.1.7.1.1.10. MySqlParameterCollection.Remove Method
	8.1.4.1.7.1.1.11. RemoveAt Method
	8.1.4.1.7.1.1.11.1. MySqlParameterCollection.RemoveAt Method
	8.1.4.1.7.1.1.11.2. MySqlParameterCollection.RemoveAt Method

	8.1.4.1.8. Transaction Property
	8.1.4.1.9. UpdatedRowSource Property
	8.1.4.1.10. MySqlCommand.Cancel Method
	8.1.4.1.11. MySqlCommand.CreateParameter Method
	8.1.4.1.12. MySqlCommand.ExecuteNonQuery Method
	8.1.4.1.13. ExecuteReader Method
	8.1.4.1.13.1. MySqlCommand.ExecuteReader Method
	8.1.4.1.13.1.1. MySqlDataReader Class
	8.1.4.1.13.1.1.1. MySqlDataReader Members
	8.1.4.1.13.1.1.1.1. Depth Property
	8.1.4.1.13.1.1.1.2. FieldCount Property
	8.1.4.1.13.1.1.1.3. HasRows Property
	8.1.4.1.13.1.1.1.4. IsClosed Property
	8.1.4.1.13.1.1.1.5. Item Property
	8.1.4.1.13.1.1.1.5.1. Item Property (Int32)
	8.1.4.1.13.1.1.1.5.2. Item Property (String)

	8.1.4.1.13.1.1.1.6. RecordsAffected Property
	8.1.4.1.13.1.1.1.7. MySqlDataReader.Close Method
	8.1.4.1.13.1.1.1.8. MySqlDataReader.GetBoolean Method
	8.1.4.1.13.1.1.1.9. MySqlDataReader.GetByte Method
	8.1.4.1.13.1.1.1.10. MySqlDataReader.GetBytes Method
	8.1.4.1.13.1.1.1.11. MySqlDataReader.GetChar Method
	8.1.4.1.13.1.1.1.12. MySqlDataReader.GetChars Method
	8.1.4.1.13.1.1.1.13. MySqlDataReader.GetDataTypeName Method
	8.1.4.1.13.1.1.1.14. MySqlDataReader.GetDateTime Method
	8.1.4.1.13.1.1.1.15. MySqlDataReader.GetDecimal Method
	8.1.4.1.13.1.1.1.16. MySqlDataReader.GetDouble Method
	8.1.4.1.13.1.1.1.17. MySqlDataReader.GetFieldType Method
	8.1.4.1.13.1.1.1.18. MySqlDataReader.GetFloat Method
	8.1.4.1.13.1.1.1.19. MySqlDataReader.GetGuid Method
	8.1.4.1.13.1.1.1.20. MySqlDataReader.GetInt16 Method
	8.1.4.1.13.1.1.1.21. MySqlDataReader.GetInt32 Method
	8.1.4.1.13.1.1.1.22. MySqlDataReader.GetInt64 Method
	8.1.4.1.13.1.1.1.23. MySqlDataReader.GetMySqlDateTime Method
	8.1.4.1.13.1.1.1.24. MySqlDataReader.GetName Method
	8.1.4.1.13.1.1.1.25. MySqlDataReader.GetOrdinal Method
	8.1.4.1.13.1.1.1.26. MySqlDataReader.GetSchemaTable Method
	8.1.4.1.13.1.1.1.27. MySqlDataReader.GetString Method
	8.1.4.1.13.1.1.1.28. MySqlDataReader.GetTimeSpan Method
	8.1.4.1.13.1.1.1.29. MySqlDataReader.GetUInt16 Method
	8.1.4.1.13.1.1.1.30. MySqlDataReader.GetUInt32 Method
	8.1.4.1.13.1.1.1.31. MySqlDataReader.GetUInt64 Method
	8.1.4.1.13.1.1.1.32. MySqlDataReader.GetValue Method
	8.1.4.1.13.1.1.1.33. MySqlDataReader.GetValues Method
	8.1.4.1.13.1.1.1.34. MySqlDataReader.IsDBNull Method
	8.1.4.1.13.1.1.1.35. MySqlDataReader.NextResult Method
	8.1.4.1.13.1.1.1.36. MySqlDataReader.Read Method

	8.1.4.1.13.2. MySqlCommand.ExecuteReader Method

	8.1.4.1.14. MySqlCommand.ExecuteScalar Method
	8.1.4.1.15. MySqlCommand.Prepare Method

	8.1.5. MySqlCommandBuilder Class
	8.1.5.1. MySqlCommandBuilder Members
	8.1.5.1.1. DeriveParameters Method
	8.1.5.1.1.1. MySqlCommandBuilder.DeriveParameters Method
	8.1.5.1.1.2. MySqlCommandBuilder.DeriveParameters Method

	8.1.5.1.2. MySqlCommandBuilder Constructor
	8.1.5.1.2.1. MySqlCommandBuilder Constructor
	8.1.5.1.2.2. MySqlCommandBuilder Constructor
	8.1.5.1.2.2.1. MySqlDataAdapter Class
	8.1.5.1.2.2.1.1. MySqlDataAdapter Members
	8.1.5.1.2.2.1.1.1. MySqlDataAdapter Constructor
	8.1.5.1.2.2.1.1.1.1. MySqlDataAdapter Constructor
	8.1.5.1.2.2.1.1.1.2. MySqlDataAdapter Constructor
	8.1.5.1.2.2.1.1.1.3. MySqlDataAdapter Constructor
	8.1.5.1.2.2.1.1.1.4. MySqlDataAdapter Constructor

	8.1.5.1.2.2.1.1.2. DeleteCommand Property
	8.1.5.1.2.2.1.1.3. InsertCommand Property
	8.1.5.1.2.2.1.1.4. SelectCommand Property
	8.1.5.1.2.2.1.1.5. UpdateCommand Property
	8.1.5.1.2.2.1.1.6. MySqlDataAdapter.RowUpdated Event
	8.1.5.1.2.2.1.1.6.1. MySqlRowUpdatedEventHandler Delegate
	8.1.5.1.2.2.1.1.6.1.1. MySqlRowUpdatedEventArgs Class
	8.1.5.1.2.2.1.1.6.1.1.1. MySqlRowUpdatedEventArgs Members
	8.1.5.1.2.2.1.1.6.1.1.1.1. MySqlRowUpdatedEventArgs Constructor
	8.1.5.1.2.2.1.1.6.1.1.1.2. Command Property

	8.1.5.1.2.2.1.1.7. MySqlDataAdapter.RowUpdating Event
	8.1.5.1.2.2.1.1.7.1. MySqlRowUpdatingEventHandler Delegate
	8.1.5.1.2.2.1.1.7.1.1. MySqlRowUpdatingEventArgs Class
	8.1.5.1.2.2.1.1.7.1.1.1. MySqlRowUpdatingEventArgs Members
	8.1.5.1.2.2.1.1.7.1.1.1.1. MySqlRowUpdatingEventArgs Constructor
	8.1.5.1.2.2.1.1.7.1.1.1.2. Command Property

	8.1.5.1.2.3. MySqlCommandBuilder Constructor
	8.1.5.1.2.4. MySqlCommandBuilder Constructor

	8.1.5.1.3. DataAdapter Property
	8.1.5.1.4. QuotePrefix Property
	8.1.5.1.5. QuoteSuffix Property
	8.1.5.1.6. MySqlCommandBuilder.GetDeleteCommand Method
	8.1.5.1.7. MySqlCommandBuilder.GetInsertCommand Method
	8.1.5.1.8. MySqlCommandBuilder.GetUpdateCommand Method
	8.1.5.1.9. MySqlCommandBuilder.RefreshSchema Method

	8.1.6. MySqlException Class
	8.1.6.1. MySqlException Members
	8.1.6.1.1. Number Property

	8.1.7. MySqlHelper Class
	8.1.7.1. MySqlHelper Members
	8.1.7.1.1. MySqlHelper.ExecuteDataRow Method
	8.1.7.1.2. ExecuteDataset Method
	8.1.7.1.2.1. MySqlHelper.ExecuteDataset Method
	8.1.7.1.2.2. MySqlHelper.ExecuteDataset Method
	8.1.7.1.2.3. MySqlHelper.ExecuteDataset Method
	8.1.7.1.2.4. MySqlHelper.ExecuteDataset Method

	8.1.7.1.3. ExecuteNonQuery Method
	8.1.7.1.3.1. MySqlHelper.ExecuteNonQuery Method
	8.1.7.1.3.2. MySqlHelper.ExecuteNonQuery Method

	8.1.7.1.4. ExecuteReader Method
	8.1.7.1.4.1. MySqlHelper.ExecuteReader Method
	8.1.7.1.4.2. MySqlHelper.ExecuteReader Method

	8.1.7.1.5. ExecuteScalar Method
	8.1.7.1.5.1. MySqlHelper.ExecuteScalar Method
	8.1.7.1.5.2. MySqlHelper.ExecuteScalar Method
	8.1.7.1.5.3. MySqlHelper.ExecuteScalar Method
	8.1.7.1.5.4. MySqlHelper.ExecuteScalar Method

	8.1.7.1.6. MySqlHelper.UpdateDataSet Method

	8.1.8. MySqlErrorCode Enumeration

	8.2. MySql.Data.Types Namespace
	8.2.1. MySql.Data.TypesHierarchy
	8.2.2. MySqlConversionException Class
	8.2.2.1. MySqlConversionException Members
	8.2.2.1.1. MySqlConversionException Constructor

	8.2.3. MySqlDateTime Class
	8.2.3.1. MySqlDateTime Members
	8.2.3.1.1. MySqlDateTime Explicit MySqlDateTime to DateTime Conversion
	8.2.3.1.2. Day Property
	8.2.3.1.3. Hour Property
	8.2.3.1.4. IsNull Property
	8.2.3.1.4.1. MySqlValue Class
	8.2.3.1.4.1.1. MySqlValue Members
	8.2.3.1.4.1.1.1. MySqlValue.numberFormat Field
	8.2.3.1.4.1.1.2. MySqlValue Constructor
	8.2.3.1.4.1.1.3. ValueAsObject Property
	8.2.3.1.4.1.1.4. MySqlValue.ToString Method
	8.2.3.1.4.1.1.5. MySqlValue.classType Field
	8.2.3.1.4.1.1.6. MySqlValue.dbType Field
	8.2.3.1.4.1.1.7. MySqlValue.mySqlDbType Field
	8.2.3.1.4.1.1.8. MySqlValue.mySqlTypeName Field
	8.2.3.1.4.1.1.9. MySqlValue.objectValue Field

	8.2.3.1.5. IsValidDateTime Property
	8.2.3.1.6. Millisecond Property
	8.2.3.1.7. Minute Property
	8.2.3.1.8. Month Property
	8.2.3.1.9. Second Property
	8.2.3.1.10. Year Property
	8.2.3.1.11. MySqlDateTime.GetDateTime Method
	8.2.3.1.12. MySqlDateTime.ToString Method

	Chapter 9. Connector/Net Support
	9.1. Connector/Net Community Support
	9.2. How to Report Connector/Net Problems or Bugs
	9.3. Connector/Net Change History

	Appendix A. MySQL Connector/Net Change History
	A.1. Changes in MySQL Connector/Net Version 6.6
	A.2. Changes in MySQL Connector/Net Version 6.5
	A.3. Changes in MySQL Connector/Net Version 6.4
	A.3.1. Changes in MySQL Connector/Net 6.4.6 (2012-11-26)
	A.3.2. Changes in MySQL Connector/Net 6.4.5 (2012-05-19)
	A.3.3. Changes in MySQL Connector/Net 6.4.4 (2011-09-26)
	A.3.4. Changes in MySQL Connector/Net 6.4.3 (2011-07-03)
	A.3.5. Changes in MySQL Connector/Net 6.4.2 (2011-06-29)
	A.3.6. Changes in MySQL Connector/Net 6.4.1 (2011-06-06, Alpha)
	A.3.7. Changes in MySQL Connector/Net 6.4.0 (Unknown)

	A.4. Changes in MySQL Connector/Net Version 6.3
	A.4.1. Changes in MySQL Connector/Net 6.3.9 (2012-04-11)
	A.4.2. Changes in MySQL Connector/Net 6.3.8 (2011-12-16)
	A.4.3. Changes in MySQL Connector/Net 6.3.7 (2011-06-22)
	A.4.4. Changes in MySQL Connector/Net 6.3.6 (2011-01-03)
	A.4.5. Changes in MySQL Connector/Net 6.3.5 (2010-10-12)
	A.4.6. Changes in MySQL Connector/Net 6.3.4 (2010-09-01, Generally Available)
	A.4.7. Changes in MySQL Connector/Net 6.3.3 (2010-07-27)
	A.4.8. Changes in MySQL Connector/Net 6.3.2 (2010-05-24, Beta)
	A.4.9. Changes in MySQL Connector/Net 6.3.1 (2010-03-02)
	A.4.10. Changes in MySQL Connector/Net 6.3.0 (2010-02-16, Alpha)

	A.5. Changes in MySQL Connector/Net Version 6.2
	A.5.1. Changes in MySQL Connector/Net 6.2.6 (Not yet released)
	A.5.2. Changes in MySQL Connector/Net 6.2.5 (2011-07-01)
	A.5.3. Changes in MySQL Connector/Net 6.2.4 (2010-08-30)
	A.5.4. Changes in MySQL Connector/Net 6.2.3 (2010-04-10)
	A.5.5. Changes in MySQL Connector/Net 6.2.2 (2009-12-22, Generally Available)
	A.5.6. Changes in MySQL Connector/Net 6.2.1 (2009-11-16, Beta)
	A.5.7. Changes in MySQL Connector/Net 6.2.0 (2009-10-21, Alpha)

	A.6. Changes in MySQL Connector/Net Version 6.1
	A.6.1. Changes in MySQL Connector/Net 6.1.7 (Not released, Generally Available)
	A.6.2. Changes in MySQL Connector/Net 6.1.6 (Not released, Generally Available)
	A.6.3. Changes in MySQL Connector/Net 6.1.5 (2010-08-30, Generally Available)
	A.6.4. Changes in MySQL Connector/Net 6.1.4 (2010-04-28, Generally Available)
	A.6.5. Changes in MySQL Connector/Net 6.1.3 (2009-11-16, Generally Available)
	A.6.6. Changes in MySQL Connector/Net 6.1.2 (2009-09-08, Generally Available)
	A.6.7. Changes in MySQL Connector/Net 6.1.1 (2009-08-20, Beta)
	A.6.8. Changes in MySQL Connector/Net 6.1.0 (2009-07-15, Alpha)

	A.7. Changes in MySQL Connector/Net Version 6.0
	A.7.1. Changes in MySQL Connector/Net 6.0.8 (Not released)
	A.7.2. Changes in MySQL Connector/Net 6.0.7 (2010-08-30)
	A.7.3. Changes in MySQL Connector/Net 6.0.6 (2010-04-28)
	A.7.4. Changes in MySQL Connector/Net 6.0.5 (2009-11-12)
	A.7.5. Changes in MySQL Connector/Net 6.0.4 (2009-06-16)
	A.7.6. Changes in MySQL Connector/Net 6.0.3 (2009-04-28)
	A.7.7. Changes in MySQL Connector/Net 6.0.2 (2009-04-07, Beta)
	A.7.8. Changes in MySQL Connector/Net 6.0.1 (2009-04-02, Beta)
	A.7.9. Changes in MySQL Connector/Net 6.0.0 (2009-03-02, Alpha)

	A.8. Changes in MySQL Connector/Net Version 5.3
	A.8.1. Changes in MySQL Connector/Net 5.3.0 (Not released)

	A.9. Changes in MySQL Connector/Net Version 5.2
	A.9.1. Changes in MySQL Connector/Net 5.2.8 (Not released)
	A.9.2. Changes in MySQL Connector/Net 5.2.7 (2009-07-15)
	A.9.3. Changes in MySQL Connector/Net 5.2.6 (2009-04-28)
	A.9.4. Changes in MySQL Connector/Net 5.2.5 (2008-11-19)
	A.9.5. Changes in MySQL Connector/Net 5.2.4 (2008-11-13)
	A.9.6. Changes in MySQL Connector/Net 5.2.3 (2008-08-19)
	A.9.7. Changes in MySQL Connector/Net 5.2.2 (2008-05-12)
	A.9.8. Changes in MySQL Connector/Net 5.2.1 (2008-02-27)
	A.9.9. Changes in MySQL Connector/Net 5.2.0 (2008-02-11)

	A.10. Changes in MySQL Connector/Net Version 5.1
	A.10.1. Changes in MySQL Connector/Net 5.1.8 (Not released)
	A.10.2. Changes in MySQL Connector/Net 5.1.7 (2008-08-21)
	A.10.3. Changes in MySQL Connector/Net 5.1.6 (2008-05-12)
	A.10.4. Changes in MySQL Connector/Net 5.1.5 (Not released)
	A.10.5. Changes in MySQL Connector/Net 5.1.4 (2007-11-20)
	A.10.6. Changes in MySQL Connector/Net 5.1.3 (2007-09-21, Beta)
	A.10.7. Changes in MySQL Connector/Net 5.1.2 (2007-06-18)
	A.10.8. Changes in MySQL Connector/Net 5.1.1 (2007-05-23)
	A.10.9. Changes in MySQL Connector/Net 5.1.0 (2007-05-01)

	A.11. Changes in MySQL Connector/Net Version 5.0
	A.11.1. Changes in MySQL Connector/Net 5.0.10 (Not released)
	A.11.2. Changes in MySQL Connector/Net 5.0.9 (Not released)
	A.11.3. Changes in MySQL Connector/Net 5.0.8 (2007-08-21)
	A.11.4. Changes in MySQL Connector/Net 5.0.7 (2007-05-18)
	A.11.5. Changes in MySQL Connector/Net 5.0.6 (2007-03-22)
	A.11.6. Changes in MySQL Connector/Net 5.0.5 (2007-03-07)
	A.11.7. Changes in MySQL Connector/Net 5.0.4 (Not released)
	A.11.8. Changes in MySQL Connector/Net 5.0.3 (2007-01-05)
	A.11.9. Changes in MySQL Connector/Net 5.0.2 (2006-11-06)
	A.11.10. Changes in MySQL Connector/Net 5.0.1 (2006-10-01)
	A.11.11. Changes in MySQL Connector/Net 5.0.0 (2006-08-08)

	A.12. Changes in MySQL Connector/Net Version 1.0
	A.12.1. Changes in MySQL Connector/Net 1.0.11 (Not released)
	A.12.2. Changes in MySQL Connector/Net 1.0.10 (2007-08-24)
	A.12.3. Changes in MySQL Connector/Net 1.0.9 (2007-02-02)
	A.12.4. Changes in MySQL Connector/Net 1.0.8 (2006-10-20)
	A.12.5. Changes in MySQL Connector/Net 1.0.7 (2005-11-21)
	A.12.6. Changes in MySQL Connector/Net 1.0.6 (2005-10-03)
	A.12.7. Changes in MySQL Connector/Net 1.0.5 (2005-08-29)
	A.12.8. Changes in MySQL Connector/Net 1.0.4 (2005-01-20)
	A.12.9. Changes in MySQL Connector/Net 1.0.3 (2004-10-12, gamma)
	A.12.10. Changes in MySQL Connector/Net 1.0.2 (2004-11-15, gamma)
	A.12.11. Changes in MySQL Connector/Net 1.0.1 (2004-10-27, Beta)
	A.12.12. Changes in MySQL Connector/Net 1.0.0 (2004-09-01)

	A.13. Changes in MySQL Connector/Net Version 0.9.0 (30 August 2004)
	A.14. Changes in MySQL Connector/Net Version 0.76
	A.15. Changes in MySQL Connector/Net Version 0.75
	A.16. Changes in MySQL Connector/Net Version 0.74
	A.17. Changes in MySQL Connector/Net Version 0.71
	A.18. Changes in MySQL Connector/Net Version 0.70
	A.19. Changes in MySQL Connector/Net Version 0.68
	A.20. Changes in MySQL Connector/Net Version 0.65
	A.21. Changes in MySQL Connector/Net Version 0.60
	A.22. Changes in MySQL Connector/Net Version 0.50

	Appendix B. Licenses for Third-Party Components
	B.1. ANTLR 3.3 License
	B.2. RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License
	B.3. zlib License
	B.4. ZLIB.NET License

